-
Identification of a Novel PPAR Signature for Predicting Prognosis, Immune Microenvironment, and Chemotherapy Response in Bladder Cancer.
Mounting evidence has confirmed that peroxisome proliferator-activated receptors (PPARs) played a crucial role in the development and progression of bladder cancer (BLCA). The purpose of this study is to comprehensively investigate the function and prognostic value of PPAR-targeted genes in BLCA.
The RNA sequencing data and clinical information of BLCA patients were acquired from The Cancer Genome Atlas (TCGA). The differentially expressed PPAR-targeted genes were investigated. Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis were performed for screening prognostic PPAR-targeted genes and constructing the prognostic PPAR signature and then validated by GSE13507 cohort and GSE32894 cohort. A nomogram was constructed to predict the outcomes of BLCA patients in combination with PPAR signature and clinical factors. Gene set enrichment analysis (GSEA) and immune cell infiltration were implemented to explore the molecular characteristics of the signature. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict the chemotherapy responses of the prognostic signature. The candidate small molecule drugs targeting PPAR-targeted genes were screened by the CMAP database.
We constructed and validated the prognostic signature comprising of 4 PPAR-targeted genes (CPT1B, CALR, AHNAK, and FADS2), which was an independent prognostic biomarker in BLCA patients. A nomogram based on the signature and clinical factors was established in the TCGA set, and the calibration plots displayed the excellent predictive capacity. GSEA analysis indicated that PPAR signature was implicated in multiple oncogenic signaling pathways and correlated with tumor immune cell infiltration. Patients in the high-risk groups showed greater sensitivity to chemotherapy than those in the low-risk groups. Moreover, 11 candidate small molecule drugs were identified for the treatment of BLCA.
We constructed and validated a novel PPAR signature, which showed the excellent performance in predicting prognosis and chemotherapy sensitivity of BLCA patients.
Zhu K
,Deng W
,Deng H
,Liu X
,Wang G
,Fu B
... -
《-》
-
Identification of a novel signature based on unfolded protein response-related gene for predicting prognosis in bladder cancer.
The unfolded protein response (UPR) served as a vital role in the progression of tumors, but the molecule mechanisms of UPR in bladder cancer (BLCA) have been not fully investigated.
We identified differentially expressed unfolded protein response-related genes (UPRRGs) between BLCA samples and normal bladder samples in the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and the least absolute shrinkage and selection operator penalized Cox regression analysis were used to construct a prognostic signature in the TCGA set. We implemented the validation of the prognostic signature in GSE13507 from the Gene Expression Omnibus database. The ESTIMATE, CIBERSORT, and ssGSEA algorithms were used to explore the correlation between the prognostic signature and immune cells infiltration as well as key immune checkpoints (PD-1, PD-L1, CTLA-4, and HAVCR2). GDSC database analyses were conducted to investigate the chemotherapy sensitivity among different groups. GSEA analysis was used to explore the potential mechanisms of UPR-based signature.
A prognostic signature comprising of seven genes (CALR, CRYAB, DNAJB4, KDELR3, CREB3L3, HSPB6, and FBXO6) was constructed to predict the outcome of BLCA. Based on the UPRRGs signature, the patients with BLCA could be classified into low-risk groups and high-risk groups. Patients with BLCA in the low-risk groups showed the more favorable outcomes than those in the high-risk groups, which was verified in GSE13507 set. This signature could serve as an autocephalous prognostic factor in BLCA. A nomogram based on risk score and clinical characteristics was established to predict the over survival of BLCA patients. Furthermore, the signature was closely related to immune checkpoints (PD-L1, CTLA-4, and HAVCR2) and immune cells infiltration including CD8+ T cells, follicular helper T cells, activated dendritic cells, and M2 macrophages. GSEA analysis indicated that immune and carcinogenic pathways were enriched in high-risk group.
We identified a novel unfolded protein response-related gene signature which could predict the over survival, immune microenvironment, and chemotherapy response of patients with bladder cancer.
Zhu K
,Xiaoqiang L
,Deng W
,Wang G
,Fu B
... -
《-》
-
Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer.
Bladder cancer (BLCA) is a common cancer associated with an unfavorable prognosis. Increasing numbers of studies have demonstrated that lipid metabolism affects the progression and treatment of tumors. Therefore, this study aimed to explore the function and prognostic value of lipid metabolism-related genes in patients with bladder cancer.
Lipid metabolism-related genes (LRGs) were acquired from the Molecular Signature Database (MSigDB). LRG mRNA expression and patient clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a signature for predicting overall survival of patients with BLCA. Kaplan-Meier analysis was performed to assess prognosis. The connectivity Map (CMAP) database was used to identify small molecule drugs for treatment. A nomogram was constructed and assessed by combining the signature and other clinical factors. The CIBERSORT, MCPcounter, QUANTISEQ, XCELL, CIBERSORT-ABS, TIMER and EPIC algorithms were used to analyze the immunological characteristics.
An 11-LRG signature was successfully constructed and validated to predict the prognosis of BLCA patients. Furthermore, we also found that the 11-gene signature was an independent hazardous factor. Functional analysis suggested that the LRGs were closely related to the PPAR signaling pathway, fatty acid metabolism and AMPK signaling pathway. The prognostic model was closely related to immune cell infiltration. Moreover, the expression of key immune checkpoint genes (PD1, CTLA4, PD-L1, LAG3, and HAVCR2) was higher in patients in the high-risk group than in those in the low-risk group. The prognostic signature based on 11-LRGs exhibited better performance in predicting overall survival than conventional clinical characteristics. Five small molecule drugs could be candidate drug treatments for BLCA patients based on the CMAP dataset.
In conclusion, the current study identified a reliable signature based on 11-LRGs for predicting the prognosis and response to immunotherapy in patients with BLCA. Five small molecule drugs were identified for the treatments of BLCA patients.
Zhu K
,Xiaoqiang L
,Deng W
,Wang G
,Fu B
... -
《Lipids in Health and Disease》
-
Identification and Validation of an Individualized Prognostic Signature of Bladder Cancer Based on Seven Immune Related Genes.
There has been no report of prognostic signature based on immune-related genes (IRGs). This study aimed to develop an IRG-based prognostic signature that could stratify patients with bladder cancer (BLCA).
RNA-seq data along with clinical information on BLCA were retrieved from the Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO). Based on TCGA dataset, differentially expressed IRGs were identified via Wilcoxon test. Among these genes, prognostic IRGs were identified using univariate Cox regression analysis. Subsequently, we split TCGA dataset into the training (n = 284) and test datasets (n = 119). Based on the training dataset, we built a least absolute shrinkage and selection operator (LASSO) penalized Cox proportional hazards regression model with multiple prognostic IRGs. It was validated in the training dataset, test dataset, and external dataset GSE13507 (n = 165). Additionally, we accessed the six types of tumor-infiltrating immune cells from Tumor Immune Estimation Resource (TIMER) website and analyzed the difference between risk groups. Further, we constructed and validated a nomogram to tailor treatment for patients with BLCA.
A set of 47 prognostic IRGs was identified. LASSO regression and identified seven BLCA-specific prognostic IRGs, i.e., RBP7, PDGFRA, AHNAK, OAS1, RAC3, EDNRA, and SH3BP2. We developed an IRG-based prognostic signature that stratify BLCA patients into two subgroups with statistically different survival outcomes [hazard ratio (HR) = 10, 95% confidence interval (CI) = 5.6-19, P < 0.001]. The ROC curve analysis showed acceptable discrimination with AUCs of 0.711, 0.754, and 0.772 at 1-, 3-, and 5-year follow-up respectively. The predictive performance was validated in the train set, test set, and external dataset GSE13507. Besides, the increased infiltration of CD4+ T cells, CD8+ T cells, macrophage, neutrophil, and dendritic cells in the high-risk group (as defined by the signature) indicated chronic inflammation may reduce the survival chances of BLCA patients. The nomogram demonstrated to be clinically-relevant and effective with accurate prediction and positive net benefit.
The present immune-related signature can effectively classify BLCA patients into high-risk and low-risk groups in terms of survival rate, which may help select high-risk BLCA patients for more intensive treatment.
Qiu H
,Hu X
,He C
,Yu B
,Li Y
,Li J
... -
《-》
-
Tumor Expression Profile Analysis Developed and Validated a Prognostic Model Based on Immune-Related Genes in Bladder Cancer.
Background: Bladder cancer (BLCA) ranks 10th in incidence among malignant tumors and 6th in incidence among malignant tumors in males. With the application of immune therapy, the overall survival (OS) rate of BLCA patients has greatly improved, but the 5-year survival rate of BLCA patients is still low. Furthermore, not every BLCA patient benefits from immunotherapy, and there are a limited number of biomarkers for predicting the immunotherapy response. Therefore, novel biomarkers for predicting the immunotherapy response and prognosis of BLCA are urgently needed. Methods: The RNA sequencing (RNA-seq) data, clinical data and gene annotation files for The Cancer Genome Atlas (TCGA) BLCA cohort were extracted from the University of California, Santa Cruz (UCSC) Xena Browser. The BLCA datasets GSE31684 and GSE32894 from the Gene Expression Omnibus (GEO) database were extracted for external validation. Immune-related genes were extracted from InnateDB. Significant differentially expressed genes (DEGs) were identified using the R package "limma," and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the DEGs were performed using R package "clusterProfiler." Least absolute shrinkage and selection operator (LASSO) regression analysis were used to construct the signature model. The infiltration level of each immune cell type was estimated using the single-sample gene set enrichment analysis (ssGSEA) algorithm. The performance of the model was evaluated with receiver operating characteristic (ROC) curves and calibration curves. Results: In total, 1,040 immune-related DEGs were identified, and eight signature genes were selected to construct a model using LASSO regression analysis. The risk score of BLCA patients based on the signature model was negatively correlated with OS and the immunotherapy response. The ROC curve for OS revealed that the model had good accuracy. The calibration curve showed good agreement between the predictions and actual observations. Conclusions: Herein, we constructed an immune-related eight-gene signature that could be a potential biomarker to predict the immunotherapy response and prognosis of BLCA patients.
Dong B
,Liang J
,Li D
,Song W
,Zhao S
,Ma Y
,Song J
,Zhu M
,Yang T
... -
《Frontiers in Genetics》