Causal inference in case of near-violation of positivity: comparison of methods.
摘要:
In causal studies, the near-violation of the positivity may occur by chance, because of sample-to-sample fluctuation despite the theoretical veracity of the positivity assumption in the population. It may mostly happen when the exposure prevalence is low or when the sample size is small. We aimed to compare the robustness of g-computation (GC), inverse probability weighting (IPW), truncated IPW, targeted maximum likelihood estimation (TMLE), and truncated TMLE in this situation, using simulations and one real application. We also tested different extrapolation situations for the sub-group with a positivity violation. The results illustrated that the near-violation of the positivity impacted all methods. We demonstrated the robustness of GC and TMLE-based methods. Truncation helped in limiting the bias in near-violation situations, but at the cost of bias in normal conditions. The application illustrated the variability of the results between the methods and the importance of choosing the most appropriate one. In conclusion, compared to propensity score-based methods, methods based on outcome regression should be preferred when suspecting near-violation of the positivity assumption.
收起
展开
DOI:
10.1002/bimj.202000323
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(145)
参考文献(0)
引证文献(2)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无