Vasodilatory Effect of Guanxinning Tablet on Rabbit Thoracic Aorta is Modulated by Both Endothelium-Dependent and -Independent Mechanism.

来自 PUBMED

作者:

Ling YShi JMa QYang QRong YHe JChen M

展开

摘要:

Vasodilatory therapy plays an important role in the treatment of cardiovascular diseases, especially hypertension and coronary heart disease. Previous research found that Guanxinning tablet (GXNT), a traditional Chinese compound preparation composed of Salvia miltiorrhiza (Danshen) and Ligusticum chuanxiong (Chuanxiong), increase blood flow in the arteries, but whether vasodilation plays a role in this effect remains unclear. Here, we found that GXNT significantly alleviated the vasoconstriction of isolated rabbit thoracic aorta induced by phenylephrine (PE), norepinephrine (NE), and KCl in a dose-dependent manner with or without endothelial cells (ECs). Changes in calcium ion levels in vascular smooth muscle cells (VSMCs) showed that both intracellular calcium release and extracellular calcium influx through receptor-dependent calcium channel (ROC) declined with GXNT treatment. Experiments to examine potassium channels suggested that endothelium-denuded vessels were also regulated by calcium-activated potassium channels (Kca) and ATP-related potassium channels (KATP) but not voltage-gated potassium channels (kv) and inward rectifying potassium channels (KIR). For endothelium-intact vessels, the nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) contents in vascular tissue obviously increased after GXNT treatment, and pretreatment with the NO synthase inhibitor Nw-nitro-L-arginine methyl ester (L-NAME) or guanylyl cyclase inhibitor methylthionine chloride (MB) significantly inhibited vasodilation. An assessment of NO-related pathway protein expression revealed that GXNT enhanced the expression of phosphorylated endothelial NO synthase (eNOS) in a dose-dependent manner but had no effect on total eNOS, p-Akt, Akt, or PI3K levels in human umbilical vein ECs (HUVECs). In addition to PI3K/AKT signaling, Ca2+/calmodulin (CaM)-Ca2+/CaM-dependent protein kinase II (CaMKII) signaling is a major signal transduction pathway involved in eNOS activation in ECs. Further results showed that free calcium ion levels were decreased in HUVECs with GXNT treatment, accompanied by an increase in p-CaMKII expression, implying an increase in the Ca2+/CaM-Ca2+/CaMKII cascade. Taken together, these findings suggest that the GXNT may have exerted their vasodilative effect by activating the endothelial CaMKII/eNOS signaling pathway in endothelium-intact rings and calcium-related ion channels in endothelium-denuded vessels.

收起

展开

DOI:

10.3389/fphar.2021.754527

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(121)

参考文献(36)

引证文献(7)

来源期刊

Frontiers in Pharmacology

影响因子:5.982

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读