Homology modelling of Trypanosoma brucei major surface proteases and molecular docking of variant surface glycoproteins and inhibitor ligands for drug design.
摘要:
Trypanosomes, which cause animal African trypanosomiasis, escape host immune responses by renewing their variable surface glycoprotein (VSG) coat. Chemotherapy is currently the only form of external intervention available. However, the efficacy of current trypanocides is poor due to overuse leading to an increase in drug resistance. Major surface proteases (MSPs) of trypanosomes, which are zinc-dependent metalloproteases, are possible drug targets. A Trypanosoma brucei MSP-B (TbMSP-B) mediates parasite antigenic variation via cleavage of 60% of VSG molecules. Whilst TbMSP-A has no apparent role in VSG cleavage; it is not known if TbMSP-C is involved in VSG cleavage. In this study, three-dimensional structures of TbMSP-A, TbMSP-B and TbMSP-C were modelled. By comparing the docking poses of the C-terminal domains of VSG substrates into the models, TbMSP-C showed an affinity for similar VSG substrate sites as TbMSP-B, but these sites differed from those recognised by TbMSP-A. This observation suggests that TbMSP-C may be involved in VSG cleavage during antigenic variation. Furthermore, by docking small inhibitor ligands into the TbMSP-B and TbMSP-C homology models, followed by molecular dynamics simulations, ligands with potential anti-trypanosomal activity were identified. Docking studies also revealed the depth of the S1' pockets of TbMSP-B and TbMSP-C, which is influential in ligand and substrate binding, thereby identifying the protease subsite pocket that should be targeted in drug design.
收起
展开
DOI:
10.1016/j.jmgm.2021.108104
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(97)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无