-
Efficient iterative Hi-C scaffolder based on N-best neighbors.
Efficient and effective genome scaffolding tools are still in high demand for generating reference-quality assemblies. While long read data itself is unlikely to create a chromosome-scale assembly for most eukaryotic species, the inexpensive Hi-C sequencing technology, capable of capturing the chromosomal profile of a genome, is now widely used to complete the task. However, the existing Hi-C based scaffolding tools either require a priori chromosome number as input, or lack the ability to build highly continuous scaffolds.
We design and develop a novel Hi-C based scaffolding tool, pin_hic, which takes advantage of contact information from Hi-C reads to construct a scaffolding graph iteratively based on N-best neighbors of contigs. Subsequent to scaffolding, it identifies potential misjoins and breaks them to keep the scaffolding accuracy. Through our tests on three long read based de novo assemblies from three different species, we demonstrate that pin_hic is more efficient than current standard state-of-art tools, and it can generate much more continuous scaffolds, while achieving a higher or comparable accuracy.
Pin_hic is an efficient Hi-C based scaffolding tool, which can be useful for building chromosome-scale assemblies. As many sequencing projects have been launched in the recent years, we believe pin_hic has potential to be applied in these projects and makes a meaningful contribution.
Guan D
,McCarthy SA
,Ning Z
,Wang G
,Wang Y
,Durbin R
... -
《BMC BIOINFORMATICS》
-
EndHiC: assemble large contigs into chromosome-level scaffolds using the Hi-C links from contig ends.
The application of PacBio HiFi and ultra-long ONT reads have enabled huge progress in the contig-level assembly, but it is still challenging to assemble large contigs into chromosomes with available Hi-C scaffolding tools, which count Hi-C links between contigs using the whole or a large part of contig regions. As the Hi-C links of two adjacent contigs concentrate only at the neighbor ends of the contigs, larger contig size will reduce the power to differentiate adjacent (signal) and non-adjacent (noise) contig linkages, leading to a higher rate of mis-assembly.
We design and develop a novel Hi-C based scaffolding tool EndHiC, which is suitable to assemble large contigs into chromosomal-level scaffolds. The core idea behind EndHiC, which distinguishes it from other Hi-C scaffolding tools, is using Hi-C links only from the most effective regions of contig ends. By this way, the signal neighbor contig linkages and noise non-neighbor contig linkages are separated more clearly. Benefiting from the increased signal to noise ratio, the reciprocal best requirement, as well as the robustness evaluation, EndHiC achieves higher accuracy for scaffolding large contigs compared to existing tools. EndHiC has been successfully applied in the Hi-C scaffolding of simulated data from human, rice and Arabidopsis, and real data from human, great burdock, water spinach, chicory, endive, yacon, and Ipomoea cairica, suggesting that EndHiC can be applied to a broad range of plant and animal genomes.
EndHiC is a novel Hi-C scaffolding tool, which is suitable for scaffolding of contig assemblies with contig N50 size near or over 10 Mb and N90 size near or over 1 Mb. EndHiC is efficient both in time and memory, and it is interface-friendly to the users. As more genome projects have been launched and the contig continuity constantly improved, we believe EndHiC has the potential to make a great contribution to the genomics field and liberate the scientists from labor-intensive manual curation works.
Wang S
,Wang H
,Jiang F
,Wang A
,Liu H
,Zhao H
,Yang B
,Xu D
,Zhang Y
,Fan W
... -
《BMC BIOINFORMATICS》
-
Comparison of Hi-C-Based Scaffolding Tools on Plant Genomes.
De novo genome assembly holds paramount significance in the field of genomics. Scaffolding, as a pivotal component within the genome assembly process, is instrumental in determining the orientation and arrangement of contigs, ultimately facilitating the generation of a chromosome-level assembly. Scaffolding is contingent on supplementary linkage information, including paired-end reads, bionano, physical mapping, genetic mapping, and Hi-C (an abbreviation for High-throughput Chromosome Conformation Capture). In recent years, Hi-C has emerged as the predominant source of linkage information in scaffolding, attributed to its capacity to offer long-range signals, leading to the development of numerous Hi-C-based scaffolding tools. However, to the best of our knowledge, there has been a paucity of comprehensive studies assessing and comparing the efficacy of these tools. In order to address this gap, we meticulously selected six tools, namely LACHESIS, pin_hic, YaHS, SALSA2, 3d-DNA, and ALLHiC, and conducted a comparative analysis of their performance across haploid, diploid, and polyploid genomes. This endeavor has yielded valuable insights in advancing the field of genome scaffolding research.
Hou Y
,Wang L
,Pan W
《Genes》
-
LongStitch: high-quality genome assembly correction and scaffolding using long reads.
Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads.
LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of Caenorhabditis elegans, Oryza sativa, and three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 1.2-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently improves upon human assemblies in under five hours using less than 23 GB of RAM.
Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch .
Coombe L
,Li JX
,Lo T
,Wong J
,Nikolic V
,Warren RL
,Birol I
... -
《BMC BIOINFORMATICS》
-
HiC-Hiker: a probabilistic model to determine contig orientation in chromosome-length scaffolds with Hi-C.
De novo assembly of reference-quality genomes used to require enormously laborious tasks. In particular, it is extremely time-consuming to build genome markers for ordering assembled contigs along chromosomes; thus, they are only available for well-established model organisms. To resolve this issue, recent studies demonstrated that Hi-C could be a powerful and cost-effective means to output chromosome-length scaffolds for non-model species with no genome marker resources, because the Hi-C contact frequency between a pair of two loci can be a good estimator of their genomic distance, even if there is a large gap between them. Indeed, state-of-the-art methods such as 3D-DNA are now widely used for locating contigs in chromosomes. However, it remains challenging to reduce errors in contig orientation because shorter contigs have fewer contacts with their neighboring contigs. These orientation errors lower the accuracy of gene prediction, read alignment, and synteny block estimation in comparative genomics.
To reduce these contig orientation errors, we propose a new algorithm, named HiC-Hiker, which has a firm grounding in probabilistic theory, rigorously models Hi-C contacts across contigs, and effectively infers the most probable orientations via the Viterbi algorithm. We compared HiC-Hiker and 3D-DNA using human and worm genome contigs generated from short reads, evaluated their performances, and observed a remarkable reduction in the contig orientation error rate from 4.3% (3D-DNA) to 1.7% (HiC-Hiker). Our algorithm can consider long-range information between distal contigs and precisely estimates Hi-C read contact probabilities among contigs, which may also be useful for determining the ordering of contigs.
HiC-Hiker is freely available at: https://github.com/ryought/hic_hiker.
Nakabayashi R
,Morishita S
《-》