Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects.

来自 PUBMED

作者:

Li YWang YWen YZhang TWang XJiang CZheng RZhou FChen DYang YShen Y

展开

摘要:

Can whole-exome sequencing (WES) and in vitro validation studies identify new causative genes associated with teratozoospermia, particularly for sperm head defect? We investigated a core group of infertile patients, including 82 cases with unexplained abnormal sperm head and 67 individuals with multiple morphological abnormalities of the sperm flagella (MMAF), and revealed rare and novel deleterious gene variants correlated with morphological abnormalities of the sperm head or tail defects. Teratozoospermia is one of the most common factors causing male infertility. Owing to high phenotypic variability, currently known genetic causes of teratozoospermia can only explain a rather minor component for patients with anomalous sperm-head shapes, and the agents responsible for atypical sperm head shapes remain largely unknown. We executed WES analysis of a Chinese cohort of patients (N = 149) with teratozoospermia to identify novel genetic causes particularly for defective sperm head. We also sought to reveal the influence of different abnormalities of sperm morphology on ICSI outcome. In this study, a cohort of 149 infertile men (82 with abnormal sperm head and 67 with MMAF) were recruited. We implemented WES on infertile patients and analyzed the negative effects of the mutations of candidate genes on their protein conformations and/or expression. We also investigated the candidate genes' spatiotemporal expression/localization during spermatogenesis in both humans and mice, and explored their interactions with proteins that are known to be involved in sperm development. We also compared the ICSI outcomes of the affected individuals with various aberrations in sperm morphology. We identified rare and deleterious variants of piwi like RNA-mediated gene silencing 4 (PIWIL4: 1/82 patients, 1.21%), coiled-coil and C2 domain containing 1B (CC2D1B: 1/82 patients, 1.21%), cyclin B3 (CCNB3: 1/82 patients, 1.21%), KIAA1210 (KIAA1210: 2/82 patients, 2.43%) and choline phosphotransferase 1 (CHPT1: 1/82 patients, 1.21%), which are novel correlates of morphological abnormalities of the sperm head; functional evidence supports roles for all of these genes in sperm head formation. The mutations of septin 12 (SEPTIN12: 2/82 patients, 2.43%) are suggested to be associated with acrosome defects. We additionally observed novel causative mutations of dynein axonemal heavy chain 2 (DNAH2: 1/67 patients, 1.49%), dynein axonemal heavy chain 10 (DNAH10: 1/67 patients, 1.49%) and dynein axonemal heavy chain 12 (DNAH12: 1/67 patients, 1.49%) in patients with MMAF, and revealed a significantly lower fertilization rate of the abnormal sperm-head group compared to the MMAF group following ICSI. Consequently, our study also suggests that the mutations of PIWIL4 and CC2D1B might be circumvented by ICSI to a degree, and that CHPT1 and KIAA1210 loss-of-function variants might be associated with failed ICSI treatment. In this study, we discovered the relationship between the genotype and phenotype of the novel causative genes of sperm head deformities in humans. However, the molecular mechanism of the relevant genes involved in sperm head development needs to be further illuminated in future research. Furthermore, evidence should be provided using knockout/knock-in mouse models for additional confirmation of the roles of these novel genes in spermatogenesis. This cohort study of 149 Chinese infertile men documents novel genetic factors involved in teratozoospermia, particularly in anomalous sperm head formation. For the first time, we suggest that SEPTIN12 is related to human acrosomal hypoplasia, and that CCNB3 is a novel causative gene for globozoospermia in humans. We also uncovered variants in two genes-KIAA1210 and CHPT1associated with acrosomal biogenesis in patients with small or absent acrosomes. Additionally, it is postulated that loss-of-function mutations of PIWIL4 and CC2D1B have a contribution to the abnormal sperm-head formation. Furthermore, we are first to demonstrate the influence of different sperm morphologies on ICSI outcomes and indicates that the abnormal sperm head may play a significant role in fertilization failure. Our findings therefore provide valuable information for the diagnosis of teratozoospermia, particularly with respect to abnormalities of the sperm head. This will allow clinicians to adopt the optimal treatment strategy and to develop personalized medicine directly targeting these effects. This work was financed by the West China Second University Hospital of Sichuan University (KS369 and KL042). The authors declare that they do not have any conflicts of interests. N/A.

收起

展开

DOI:

10.1093/humrep/deab229

被引量:

17

年份:

2021

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(389)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读