Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells.

来自 PUBMED

摘要:

Growing global biowaste and its environmental issues challenge the need for converting biowastes into a beneficial product. Among the biowaste, here kiwi fruit (Actinidia Deliciosa) peels are considered for the preparation of carbon dots (CDs). Using a green one-pot hydrothermal-carbonization method, kiwi fruit peels were effectively converted into valuable kiwi fruit peel carbon dots (KFP-CDs). The morphology, physio-chemical and optical properties of as-synthesized KFP-CDs were analyzed using various analytical techniques such as X-ray powder diffraction, Raman spectroscopy, attenuated total reflection-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet-visible, and fluorescence spectroscopy. The KFP-CDs revealed a homogeneous spherical shape, monodispersed with an average size of 5 nm. The characterization confirms that KFP-CDs have functional groups such as -CN, -COOH, and -OH which are responsible for the easy dispersion of KFP-CDs in aqueous media. Without any preprocessing, KFP-CDs exhibit strong fluorescence upon exposure to UV light. Further, KFP-CDs displayed excitation-dependent fluorescence emission with a good quantum yield of about 18%. Thus by considering the excellent properties of KFP-CDs, KFP-CDs were used as fluorescent ink for drawing and writing without any capping/passivation agent. The pictures and words were instantaneously viewed when exposed to UV light. In addition, KFP-CDs tested for cell imaging in four human cell lines (normal and cancer cells) bestowed excellent biocompatibility and low cytotoxicity, which is important for the safe and long-term development of cellular imaging. The findings imply that KFP-CDs can be utilized as a cell labeling agent for mesenchymal stem cells, breast cancer, and thyroid cancer cells in vitro imaging. Thus, these observations revealed that investigating sustainable resource-based CDs can open up new avenues for tackling environmental issues.

收起

展开

DOI:

10.1016/j.envres.2021.112365

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(369)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读