Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network.

来自 PUBMED

作者:

Chen YLiao RYao YWang QFu L

展开

摘要:

This study was designed to identify the potential diagnostic biomarkers of rheumatoid arthritis (RA) and to explore the potential pathological relevance of immune cell infiltration in this disease. Three previously published datasets containing gene expression data from 35 RA patients and 29 controls (GSE55235, GSE55457, and GSE12021) were downloaded from the GEO database, after which a weighted correlation network analysis (WGCNA) approach was utilized to clarify differentially abundant genes. Candidate biomarkers of RA were then identified via the use of a LASSO regression model and support vector machine recursive feature elimination (SVM-RFE) analyses. Data were validated based upon the area under the receiver operating characteristic curve (AUC) values, with hub genes being identified as those with an AUC > 85% and a P value < 0.05. Lastly, the CIBERSORT algorithm was used to assess immune cell infiltration of RA tissues, and correlations between immune cell infiltration and disease-related diagnostic biomarkers were assessed. The green-yellow module containing 87 genes was found to be highly correlated with RA positivity. FADD, CXCL2, and CXCL8 were identified as potential RA diagnostic biomarkers (AUC > 0.85), and these results were validated using the GSE77298 dataset. Immune cell infiltration analyses revealed the expression of hub genes to be correlated with mast cells, monocytes, activated NK cells, CD8 T cells, resting dendritic cells, and plasma cells. These data indicate that FADD, CXCL2, and CXCL8 are valuable diagnostic biomarkers of RA, offering new insight that can guide future studies of RA incidence and progression.

收起

展开

DOI:

10.1007/s10067-021-05960-9

被引量:

29

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(380)

参考文献(21)

引证文献(29)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读