Adsorption of enzymes with hydrolytic activity on polyethylene terephthalate.
摘要:
Polyethylene terephthalate (PET) degrading enzymes have recently obtained an increasing interest as a means to decompose plastic waste. Here, we have studied the binding of three PET hydrolases on a suspended PET powder under conditions of both enzyme- and substrate excess. A Langmuir isotherm described the binding process reasonably and revealed a prominent affinity for the PET substrate, with dissociation constants consistently below 150 nM. The saturated substrate coverage approximately corresponded to a monolayer on the PET surface for all three enzymes. No distinct contributions from specific ligand binding in the active site could be identified, which points towards adsorption predominantly driven by non-specific interactions in contrast to enzymes naturally evolved for the breakdown of insoluble polymers. However, we observed a correlation between the progression of enzymatic hydrolysis and increased binding capacity, probably due to surface modifications of the PET polymer over time. Our results provide functional insight, suggesting that rational design should target the specific ligand interaction in the active site rather than the already high, general adsorption capacity of these enzymes.
收起
展开
DOI:
10.1016/j.enzmictec.2021.109937
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(197)
参考文献(0)
引证文献(14)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无