Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer.

来自 PUBMED

作者:

Ni LChen YYang JChen C

展开

摘要:

The purpose of the study is to identify potential key genes and pathways, using bioinformatics, underlying the potentially common molecular mechanisms between endometriosis (EMS) and ovarian cancer (OC). Two datasets were collected from the Gene Expression Omnibus database, and the limma package identified common differentially expressed genes (DEGs) in the EMS and OC groups compared to controls. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene interaction network, and module analyses identified the enriched pathways associated with DEGs. A protein-protein interaction (PPI) network was then constructed, and the CytoHubba plugin of Cytoscape was used to calculate the degree of connectivity for proteins in the PPI network. A total of 571 overlapping DEGs were identified between EMS and OC (vs. controls). Enriched DEGs were associated with 36 gene ontology terms and 7 Kyoto Encyclopedia of Genes and Genomes pathways, which were mainly associated with deactivation of the p53 signaling pathway. The Kaplan-Meier plotter platform confirmed the expression of the identified hub genes, and survival analysis suggested that CCNB1, CCNB2, BUB1B, CCNA2, KIF2C, and TOP2A are associated with decreased survival and disease-free survival rates of OC. The key pathways identified herein elucidate the possible mechanism by which EMS evolves into OC; further, the identified hub genes may serve as potential biomarkers to predict OC occurrence and prognosis.

收起

展开

DOI:

10.1007/s00404-021-06285-3

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(142)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读