DCA Protects against Oxidation Injury Attributed to Cerebral Ischemia-Reperfusion by Regulating Glycolysis through PDK2-PDH-Nrf2 Axis.

来自 PUBMED

作者:

Zhao XLi SMo YLi RHuang SZhang ANi XDai QWang J

展开

摘要:

Cerebral ischemic stroke (IS) is still a difficult problem to be solved; energy metabolism failure is one of the main factors causing mitochondrion dysfunction and oxidation stress damage within the pathogenesis of cerebral ischemia, which produces considerable reactive oxygen species (ROS) and opens the blood-brain barrier. Dichloroacetic acid (DCA) can inhibit pyruvate dehydrogenase kinase (PDK). Moreover, DCA has been indicated with the capability of increasing mitochondrial pyruvate uptake and promoting oxidation of glucose in the course of glycolysis, thereby improving the activity of pyruvate dehydrogenase (PDH). As a result, pyruvate flow is promoted into the tricarboxylic acid cycle to expedite ATP production. DCA has a protective effect on IS and brain ischemia/reperfusion (I/R) injury, but the specific mechanism remains unclear. This study adopted a transient middle cerebral artery occlusion (MCAO) mouse model for simulating IS and I/R injury in mice. We investigated the mechanism by which DCA regulates glycolysis and protects the oxidative damage induced by I/R injury through the PDK2-PDH-Nrf2 axis. As indicated from the results of this study, DCA may improve glycolysis, reduce oxidative stress and neuronal death, damage the blood-brain barrier, and promote the recovery of oxidative metabolism through inhibiting PDK2 and activating PDH. Additionally, DCA noticeably elevated the neurological score and reduced the infarct volume, brain water content, and necrotic neurons. Moreover, as suggested from the results, DCA elevated the content of Nrf2 as well as HO-1, i.e., the downstream antioxidant proteins pertaining to Nrf2, while decreasing the damage of BBB and the degradation of tight junction proteins. To simulate the condition of hypoxia and ischemia in vitro, HBMEC cells received exposure to transient oxygen and glucose deprivation (OGD). The DCA treatment is capable of reducing the oxidative stress and blood-brain barrier of HBMEC cells after in vitro hypoxia and reperfusion (H/R). Furthermore, this study evidenced that HBMEC cells could exhibit higher susceptibility to H/R-induced oxidative stress after ML385 application, the specific inhibitor of Nrf2. Besides, the protection mediated by DCA disappeared after ML385 application. To sum up, as revealed from the mentioned results, DCA could exert the neuroprotective effect on oxidative stress and blood-brain barrier after brain I/R injury via PDK2-PDH-Nrf2 pathway activation. Accordingly, the PDK2-PDH-Nrf2 pathway may play a key role and provide a new pharmacology target in cerebral IS and I/R protection by DCA.

收起

展开

DOI:

10.1155/2021/5173035

被引量:

25

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(487)

参考文献(47)

引证文献(25)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读