Hypoxemia severity and survival in ILD and COPD on long-term oxygen therapy - The population-based DISCOVERY study.

来自 PUBMED

作者:

Palm AEkström M

展开

摘要:

Whether long-term oxygen therapy (LTOT) improves survival in interstitial lung disease (ILD) is unclear. A recent study reported similar survival in ILD patients with severe hypoxemia on LTOT vs. moderate hypoxemia without LTOT, and proposed that LTOT could be indicated in ILD already at moderate hypoxemia. The aim of this study was to compare survival by severity of hypoxemia in patients with ILD and COPD, respectively, treated with LTOT. A population-based, longitudinal study of adults starting LTOT for ILD or COPD 1987-2018. Transplant-free survival was compared between moderate (PaO2 7.4-8.7 kPa) and severe (PaO2<7.4 kPa) hypoxemia using Cox regression, adjusted for age, sex, BMI, smoking status, WHO performance status, year of starting LTOT, diagnosis of heart failure, ischemic heart disease and diabetes mellitus. In total, 17,084 patients were included, with ILD and moderate (n = 470) or severe hypoxemia (n = 2,408), and COPD with moderate (n = 2,087) or severe hypoxemia (n = 12,119). Compared with in COPD, ILD patients on LTOT had lower transplant-free survival after one year (41.9 vs. 67.1%) and two years (20.3 vs. 46.5%). In COPD worse hypoxemia was associated with slightly increased risk of death/lung transplantation, aHR 1.07 (1.00-1.14), a difference not shown in ILD, aHR 0.91 (0.80-1.03). Transplant-free survival did not differ in ILD patients between moderate and severe hypoxia despite LTOT.

收起

展开

DOI:

10.1016/j.rmed.2021.106659

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(157)

参考文献(0)

引证文献(5)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读