-
Telehealth interventions: remote monitoring and consultations for people with chronic obstructive pulmonary disease (COPD).
Chronic obstructive pulmonary disease (COPD, including bronchitis and emphysema) is a chronic condition causing shortness of breath, cough, and exacerbations leading to poor health outcomes. Face-to-face visits with health professionals can be hindered by severity of COPD or frailty, and by people living at a distance from their healthcare provider and having limited access to services. Telehealth technologies aimed at providing health care remotely through monitoring and consultations could help to improve health outcomes of people with COPD.
To assess the effectiveness of telehealth interventions that allow remote monitoring and consultation and multi-component interventions for reducing exacerbations and improving quality of life, while reducing dyspnoea symptoms, hospital service utilisation, and death among people with COPD.
We identified studies from the Cochrane Airways Trials Register. Additional sources searched included the US National Institutes of Health Ongoing Trials Register, the World Health Organization International Clinical Trials Registry Platform, and the IEEEX Xplore Digital Library. The latest search was conducted in April 2020. We used the GRADE approach to judge the certainty of evidence for outcomes.
Eligible randomised controlled trials (RCTs) included adults with diagnosed COPD. Asthma, cystic fibrosis, bronchiectasis, and other respiratory conditions were excluded. Interventions included remote monitoring or consultation plus usual care, remote monitoring or consultation alone, and mult-component interventions from all care settings. Quality of life scales included St George's Respiratory Questionnaire (SGRQ) and the COPD Assessment Test (CAT). The dyspnoea symptom scale used was the Chronic Respiratory Disease Questionnaire Self-Administered Standardized Scale (CRQ-SAS).
We used standard Cochrane methodological procedures. We assessed confidence in the evidence for each primary outcome using the GRADE method. Primary outcomes were exacerbations, quality of life, dyspnoea symptoms, hospital service utilisation, and mortality; a secondary outcome consisted of adverse events.
We included 29 studies in the review (5654 participants; male proportion 36% to 96%; female proportion 4% to 61%). Most remote monitoring interventions required participants to transfer measurements using a remote device and later health professional review (asynchronous). Only five interventions transferred data and allowed review by health professionals in real time (synchronous). Studies were at high risk of bias due to lack of blinding, and certainty of evidence ranged from moderate to very low. We found no evidence on comparison of remote consultations with or without usual care. Remote monitoring plus usual care (8 studies, 1033 participants) Very uncertain evidence suggests that remote monitoring plus usual care may have little to no effect on the number of people experiencing exacerbations at 26 weeks or 52 weeks. There may be little to no difference in effect on quality of life (SGRQ) at 26 weeks (very low to low certainty) or on hospitalisation (all-cause or COPD-related; very low certainty). COPD-related hospital re-admissions are probably reduced at 26 weeks (hazard ratio 0.42, 95% confidence interval (CI) 0.19 to 0.93; 106 participants; moderate certainty). There may be little to no difference in deaths between intervention and usual care (very low certainty). We found no evidence for dyspnoea symptoms or adverse events. Remote monitoring alone (10 studies, 2456 participants) Very uncertain evidence suggests that remote monitoring may result in little to no effect on the number of people experiencing exacerbations at 41 weeks (odds ratio 1.02, 95% CI 0.67 to 1.55). There may be little to no effect on quality of life (SGRQ total at 17 weeks, or CAT at 38 and 52 weeks; very low certainty). There may be little to no effect on dyspnoea symptoms on the CRQ-SAS at 26 weeks (low certainty). There may be no difference in effects on the number of people admitted to hospital (very low certainty) or on deaths (very low certainty). We found no evidence for adverse events. Multi-component interventions with remote monitoring or consultation component (11 studies, 2165 participants) Very uncertain evidence suggests that multi-component interventions may have little to no effect on the number of people experiencing exacerbations at 52 weeks. Quality of life at 13 weeks may improve as seen in SGRQ total score (mean difference -9.70, 95% CI -18.32 to -1.08; 38 participants; low certainty) but not at 26 or 52 weeks (very low certainty). COPD assessment test (CAT) scores may improve at a mean of 38 weeks, but evidence is very uncertain and interventions are varied. There may be little to no effect on the number of people admitted to hospital at 33 weeks (low certainty). Multi-component interventions are likely to result in fewer people re-admitted to hospital at a mean of 39 weeks (OR 0.50, 95% CI 0.31 to 0.81; 344 participants, 3 studies; moderate certainty). There may be little to no difference in death at a mean of 40 weeks (very low certainty). There may be little to no effect on people experiencing adverse events (very low certainty). We found no evidence for dyspnoea symptoms.
Remote monitoring plus usual care provided asynchronously may not be beneficial overall compared to usual care alone. Some benefit is seen in reduction of COPD-related hospital re-admissions, but moderate-certainty evidence is based on one study. We have not found any evidence for dyspnoea symptoms nor harms, and there is no difference in fatalities when remote monitoring is provided in addition to usual care. Remote monitoring interventions alone are no better than usual care overall for health outcomes. Multi-component interventions with asynchronous remote monitoring are no better than usual care but may provide short-term benefit for quality of life and may result in fewer re-admissions to hospital for any cause. We are uncertain whether remote monitoring is responsible for the positive impact on re-admissions, and we are unable to discern the long-term benefits of receiving remote monitoring as part of patient care. Owing to paucity of evidence, it is unclear which COPD severity subgroups would benefit from telehealth interventions. Given there is no evidence of harm, telehealth interventions may be beneficial as an additional health resource depending on individual needs based on professional assessment. Larger studies can determine long-term effects of these interventions.
Janjua S
,Carter D
,Threapleton CJ
,Prigmore S
,Disler RT
... -
《Cochrane Database of Systematic Reviews》
-
Interventions to improve adherence to pharmacological therapy for chronic obstructive pulmonary disease (COPD).
Chronic obstructive pulmonary disease (COPD) is a chronic lung condition characterised by persistent respiratory symptoms and limited lung airflow, dyspnoea and recurrent exacerbations. Suboptimal therapy or non-adherence may result in limited effectiveness of pharmacological treatments and subsequently poor health outcomes.
To determine the efficacy and safety of interventions intended to improve adherence to single or combined pharmacological treatments compared with usual care or interventions that are not intended to improve adherence in people with COPD.
We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register, CENTRAL, MEDLINE and Embase (search date 1 May 2020). We also searched web-based clinical trial registers.
RCTs included adults with COPD diagnosed by established criteria (e.g. Global Initiative for Obstructive Lung Disease). Interventions included change to pharmacological treatment regimens, adherence aids, education, behavioural or psychological interventions (e.g. cognitive behavioural therapy), communication or follow-up by a health professional (e.g. telephone, text message or face-to-face), multi-component interventions, and interventions to improve inhaler technique.
We used standard Cochrane methodological procedures. Working in pairs, four review authors independently selected trials for inclusion, extracted data and assessed risk of bias. We assessed confidence in the evidence for each primary outcome using GRADE. Primary outcomes were adherence, quality of life and hospital service utilisation. Adherence measures included the Adherence among Patients with Chronic Disease questionnaire (APCD). Quality of life measures included the St George's Respiratory Questionnaire (SGRQ), COPD Assessment Test (CAT) and Clinical COPD Questionnaire (CCQ).
We included 14 trials (2191 participants) in the analysis with follow-up ranging from six to 52 weeks. Age ranged from 54 to 75 years, and COPD severity ranged from mild to very severe. Trials were conducted in the USA, Spain, Germany, Japan, Jordan, Northern Ireland, Iran, South Korea, China and Belgium. Risk of bias was high due to lack of blinding. Evidence certainty was downgraded due to imprecision and small participant numbers. Single component interventions Six studies (55 to 212 participants) reported single component interventions including changes to pharmacological treatment (different roflumilast doses or different inhaler types), adherence aids (Bluetooth inhaler reminder device), educational (comprehensive verbal instruction), behavioural or psychological (motivational interview). Change in dose of roflumilast may result in little to no difference in adherence (odds ratio (OR) 0.67, 95% confidence interval (CI) 0.22 to 1.99; studies = 1, participants = 55; low certainty). A Bluetooth inhaler reminder device did not improve adherence, but comprehensive verbal instruction from a health professional did improve mean adherence (prescription refills) (mean difference (MD) 1.00, 95% CI 0.46 to 1.54). Motivational interview improved mean adherence scores on the APCD scale (MD 22.22, 95% CI 8.42 to 36.02). Use of a single inhaler compared to two separate inhalers may have little to no impact on quality of life (SGRQ; MD 0.80, 95% CI -3.12 to 4.72; very low certainty). A Bluetooth inhaler monitoring device may provide a small improvement in quality of life on the CCQ (MD 0.40, 95% CI 0.07 to 0.73; very low certainty). Single inhaler use may have little to no impact on the number of people admitted to hospital compared to two separate inhalers (OR 1.47, 95% CI 0.75 to 2.90; very low certainty). Single component interventions may have little to no impact on the number of people expereincing adverse events (very low certainty evidence from studies of a change in pharmacotherapy or use of adherence aids). A change in pharmacotherapy may have little to no impact on exacerbations or deaths (very low certainty). Multi-component interventions Eight studies (30 to 734 participants) reported multi-component interventions including tailored care package that included adherence support as a key component or included inhaler technique as a component. A multi-component intervention may result in more people adhering to pharmacotherapy compared to control at 40.5 weeks (risk ratio (RR) 1.37, 95% CI 1.18 to 1.59; studies = 4, participants = 446; I2 = 0%; low certainty). There may be little to no impact on quality of life (SGRQ, Chronic Respiratory Disease Questionnaire, CAT) (studies = 3; low to very low certainty). Multi-component interventions may help to reduce the number of people admitted to hospital for any cause (OR 0.37, 95% CI 0.22 to 0.63; studies = 2, participants = 877; low certainty), or COPD-related hospitalisations (OR 0.15, 95% CI 0.07 to 0.34; studies = 2, participants = 220; moderate certainty). There may be a small benefit on people experiencing severe exacerbations. There may be little to no effect on adverse events, serious adverse events or deaths, but events were infrequently reported and were rare (low to very certainty).
Single component interventions (e.g. education or motivational interviewing provided by a health professional) can help to improve adherence to pharmacotherapy (low to very low certainty). There were slight improvements in quality of life with a Bluetooth inhaler device, but evidence is from one study and very low certainty. Change to pharmacotherapy (e.g. single inhaler instead of two, or different doses of roflumilast) has little impact on hospitalisations or exacerbations (very low certainty). There is no difference in people experiencing adverse events (all-cause or COPD-related), or deaths (very low certainty). Multi-component interventions may improve adherence with education, motivational or behavioural components delivered by health professionals (low certainty). There is little to no impact on quality of life (low to very low certainty). They may help reduce the number of people admitted to hospital overall (specifically pharmacist-led approaches) (low certainty), and fewer people may have COPD-related hospital admissions (moderately certainty). There may be a small reduction in people experiencing severe exacerbations, but evidence is from one study (low certainty). Limited evidence found no difference in people experiencing adverse events, serious adverse events or deaths (low to very low certainty). The evidence presented should be interpreted with caution. Larger studies with more intervention types, especially single interventions, are needed. It is unclear which specific COPD subgroups would benefit, therefore discussions between health professionals and patients may help to determine whether they will help to improve health outcomes.
Janjua S
,Pike KC
,Carr R
,Coles A
,Fortescue R
,Batavia M
... -
《Cochrane Database of Systematic Reviews》
-
Tailored or adapted interventions for adults with chronic obstructive pulmonary disease and at least one other long-term condition: a mixed methods review.
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterised by shortness of breath, cough and recurrent exacerbations. People with COPD often live with one or more co-existing long-term health conditions (comorbidities). People with more severe COPD often have a higher number of comorbidities, putting them at greater risk of morbidity and mortality.
To assess the effectiveness of any single intervention for COPD adapted or tailored to their comorbidity(s) compared to any other intervention for people with COPD and one or more common comorbidities (quantitative data, RCTs) in terms of the following outcomes: Quality of life, exacerbations, functional status, all-cause and respiratory-related hospital admissions, mortality, pain, and depression and anxiety. To assess the effectiveness of an adapted or tailored single COPD intervention (simple or complex) that is aimed at changing the management of people with COPD and one or more common comorbidities (quantitative data, RCTs) compared to usual care in terms of the following outcomes: Quality of life, exacerbations, functional status, all-cause and respiratory-related hospital admissions, mortality, pain, and depression and anxiety. To identify emerging themes that describe the views and experiences of patients, carers and healthcare professionals when receiving or providing care to manage multimorbidities (qualitative data).
We searched multiple databases including the Cochrane Airways Trials Register, CENTRAL, MEDLINE, Embase, and CINAHL, to identify relevant randomised and qualitative studies. We also searched trial registries and conducted citation searches. The latest search was conducted in January 2021.
Eligible randomised controlled trials (RCTs) compared a) any single intervention for COPD adapted or tailored to their comorbidity(s) compared to any other intervention, or b) any adapted or tailored single COPD intervention (simple or complex) that is aimed at changing the management of people with COPD and one or more comorbidities, compared to usual care. We included qualitative studies or mixed-methods studies to identify themes.
We used standard Cochrane methods for analysis of the RCTs. We used Cochrane's risk of bias tool for the RCTs and the CASP checklist for the qualitative studies. We planned to use the Mixed Methods Appraisal tool (MMAT) to assess the risk of bias in mixed-methods studies, but we found none. We used GRADE and CERQual to assess the quality of the quantitative and qualitative evidence respectively. The primary outcome measures for this review were quality of life and exacerbations.
Quantitative studies We included seven studies (1197 participants) in the quantitative analyses, with interventions including telemonitoring, pulmonary rehabilitation, treatment optimisation, water-based exercise training and case management. Interventions were either compared with usual care or with an active comparator (such as land-based exercise training). Duration of trials ranged from 4 to 52 weeks. Mean age of participants ranged from 64 to 72 years and COPD severity ranged from mild to very severe. Trials included either people with COPD and a specific comorbidity (including cardiovascular disease, metabolic syndrome, lung cancer, head or neck cancer, and musculoskeletal conditions), or with one or more comorbidities of any type. Overall, we judged the evidence presented to be of moderate to very low certainty (GRADE), mainly due to the methodological quality of included trials and imprecision of effect estimates. Intervention versus usual care Quality of life as measured by the St George's Respiratory Questionnaire (SGRQ) total score may improve with tailored pulmonary rehabilitation compared to usual care at 52 weeks (mean difference (MD) -10.85, 95% confidence interval (CI) -12.66 to -9.04; 1 study, 70 participants; low-certainty evidence). Tailored pulmonary rehabilitation is likely to improve COPD assessment test (CAT) scores compared with usual care at 52 weeks (MD -8.02, 95% CI -9.44 to -6.60; 1 study, 70 participants, moderate-certainty evidence) and with a multicomponent telehealth intervention at 52 weeks (MD -6.90, 95% CI -9.56 to -4.24; moderate-certainty evidence). Evidence is uncertain about effects of pharmacotherapy optimisation or telemonitoring interventions on CAT improvement compared with usual care. There may be little to no difference in the number of people experiencing exacerbations, or mean exacerbations with case management compared with usual care (OR 1.09, 95% CI 0.75 to 1.57; 1 study, 470 participants; very low-certainty evidence). For secondary outcomes, six-minute walk distance (6MWD) may improve with pulmonary rehabilitation, water-based exercise or multicomponent interventions at 38 to 52 weeks (low-certainty evidence). A multicomponent intervention may result in fewer people being admitted to hospital at 17 weeks, although there may be little to no difference in a telemonitoring intervention. There may be little to no difference between intervention and usual care for mortality. Intervention versus active comparator We included one study comparing water-based and land-based exercise (30 participants). We found no evidence for quality of life or exacerbations. There may be little to no difference between water- and land-based exercise for 6MWD (MD 5 metres, 95% CI -22 to 32; 38 participants; very low-certainty evidence). Qualitative studies One nested qualitative study (21 participants) explored perceptions and experiences of people with COPD and long-term conditions, and of researchers and health professionals who were involved in an RCT of telemonitoring equipment. Several themes were identified, including health status, beliefs and concerns, reliability of equipment, self-efficacy, perceived ease of use, factors affecting usefulness and perceived usefulness, attitudes and intention, self-management and changes in healthcare use. We judged the qualitative evidence presented as of very low certainty overall.
Owing to a paucity of eligible trials, as well as diversity in the intervention type, comorbidities and the outcome measures reported, we were unable to provide a robust synthesis of data. Pulmonary rehabilitation or multicomponent interventions may improve quality of life and functional status (6MWD), but the evidence is too limited to draw a robust conclusion. The key take-home message from this review is the lack of data from RCTs on treatments for people living with COPD and comorbidities. Given the variation in number and type of comorbidity(s) an individual may have, and severity of COPD, larger studies reporting individual patient data are required to determine these effects.
Dennett EJ
,Janjua S
,Stovold E
,Harrison SL
,McDonnell MJ
,Holland AE
... -
《Cochrane Database of Systematic Reviews》
-
Digital interventions for the management of chronic obstructive pulmonary disease.
Chronic obstructive pulmonary disease (COPD) is associated with dyspnoea, cough or sputum production (or both) and affects quality of life and functional status. More efficient approaches to alternative management that may include patients themselves managing their condition need further exploration in order to reduce the impact on both patients and healthcare services. Digital interventions may potentially impact on health behaviours and encourage patient engagement.
To assess benefits and harms of digital interventions for managing COPD and apply Behaviour Change Technique (BCT) taxonomy to describe and explore intervention content.
We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search 28 April 2020). We found other trials at web-based clinical trials registers.
We included RCTs comparing digital technology interventions with or without routine supported self-management to usual care, or control treatment for self-management. Multi-component interventions (of which one component was digital self-management) compared with usual care, standard care or control treatment were included.
We used standard Cochrane methods. Two review authors independently selected trials for inclusion, extracted data, and assessed risk of bias. Discrepancies were resolved with a third review author. We assessed certainty of the evidence using the GRADE approach. Primary outcomes were impact on health behaviours, self-efficacy, exacerbations and quality of life, including the St George's Respiratory Questionnaire (SGRQ). The minimally important difference (MID) for the SGRQ is 4 points. Two review authors independently applied BCT taxonomy to identify mechanisms in the digital interventions that influence behaviours.
Fourteen studies were included in the meta-analyses (1518 participants) ranging from 13 to 52 weeks duration. Participants had mild to very severe COPD. Risk of bias was high due to lack of blinding. GRADE ratings were low to very low certainty due to lack of blinding and imprecision. Common BCT clusters identified as behaviour change mechanisms in interventions were goals and planning, feedback and monitoring, social support, shaping knowledge and antecedents. Digital technology intervention with or without routine supported self-management Interventions included mobile phone (three studies), smartphone applications (one study), and web or Internet-based (five studies). Evidence is very uncertain about effects on impact on health behaviours as measured by six-minute walk distance (6MWD) at 13 weeks (mean difference (MD) 26.20, 95% confidence interval (CI) -21.70 to 74.10; participants = 122; studies = 2) or 23 to 26 weeks (MD 14.31, 95% CI -19.41 to 48.03; participants = 164; studies = 3). There may be improvement in 6MWD at 52 weeks (MD 54.33 95% CI -35.47 to 144.12; participants = 204; studies = 2) but studies were varied (very low certainty). There may be no difference in self-efficacy on managing Chronic Disease Scale (SEMCD) or pulmonary rehabilitation adapted index of self-efficacy tool (PRAISE). Evidence is very uncertain. Quality of life may be slightly improved on the chronic respiratory disease questionnaire (CRQ) at 13 weeks (MD 0.45, 95% CI 0.01 to 0.90; participants = 123; studies = 2; low certainty), but is not clinically important (MID 0.5). There may be little or no difference at 23 or 52 weeks (low to very low certainty). There may be a clinical improvement on SGRQ total at 52 weeks (MD -26.57, 95% CI -34.09 to -19.05; participants = 120; studies = 1; low certainty). Evidence for COPD assessment test (CAT) and Clinical COPD Questionnaire (CCQ) is very uncertain. There may be little or no difference in dyspnoea symptoms (CRQ dyspnoea) at 13, 23 weeks or 52 weeks (low to very low certainty evidence) or mean number of exacerbations at 26 weeks (low-certainty evidence). There was no evidence for the number of people experiencing adverse events. Multi-component interventions Digital components included mobile phone (one study), and web or internet-based (four studies). Evidence is very uncertain about effects on impact on health behaviour (6MWD) at 13 weeks (MD 99.60, 95% CI -15.23 to 214.43; participants = 20; studies = 1). No evidence was found for self-efficacy. Four studies reported effects on quality of life (SGRQ and CCQ scales). The evidence is very uncertain. There may be no difference in the number of people experiencing exacerbations or mean days to first exacerbation at 52 weeks with a multi-component intervention compared to standard care. Evidence is very uncertain about effects on the number of people experiencing adverse events at 52 weeks.
There is insufficient evidence to demonstrate a clear benefit or harm of digital technology interventions with or without supported self-management, or multi-component interventions compared to usual care in improving the 6MWD or self-efficacy. We found there may be some short-term improvement in quality of life with digital interventions, but there is no evidence about whether the effect is sustained long term. Dyspnoea symptoms may improve over a longer duration of digital intervention use. The evidence for multi-component interventions is very uncertain and as there is little or no evidence for adverse events, we cannot determine the benefit or harm of these interventions. The evidence base is predominantly of very low certainty with concerns around high risk of bias due to lack of blinding. Given that variation of interventions and blinding is likely to be a concern, future, larger studies are needed taking these limitations in consideration. Future studies are needed to determine whether the small improvements observed in this review can be applied to the general COPD population. A clear understanding of behaviour change through the BCT classification is important to gauge uptake of digital interventions and health outcomes in people with varying severity of COPD. Currently there is no guidance for interpreting BCT components of a digital intervention for changes to health outcomes. We could not interpret the BCT findings to the health outcomes we were investigating due to limited evidence that was of very low certainty. In future research, standardised approaches need to be considered when designing protocols to investigate effectiveness of digital interventions by including a standardised approach to BCT classification in addition to validated behavioural outcome measures that may reflect changes in behaviour.
Janjua S
,Banchoff E
,Threapleton CJ
,Prigmore S
,Fletcher J
,Disler RT
... -
《Cochrane Database of Systematic Reviews》
-
Combined aclidinium bromide and long-acting beta2-agonist for chronic obstructive pulmonary disease (COPD).
Ni H
,Moe S
,Soe Z
,Myint KT
,Viswanathan KN
... -
《Cochrane Database of Systematic Reviews》