An MRI-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: a multi-cohort study.

来自 PUBMED

作者:

Chen JLu SMao YTan LLi GGao YTan PHuang DZhang XQiu YLiu Y

展开

摘要:

To explore whether radiomics features extracted from pre-treatment magnetic resonance imaging (MRI) can predict the overall survival (OS) in patients with hypopharyngeal squamous cell carcinoma. A total of 190 patients with hypopharyngeal squamous cell carcinoma were eligibly enrolled from two institutions. Radiomics features were extracted from contrast-enhanced axial T1-weighted (CE-T1WI) sequence. The least absolute shrinkage selection operator (LASSO) algorithm was applied to establish a radiomics score correlated with OS. Multivariate logistic regression analysis was applied to determine the independent risk factors, which was combined with radiomics score to build the final radiomics nomogram. A radiomics score with 6 CE-T1WI features for OS prediction was constructed and validated; its integration with specific clinicopathologic factors (N stage) showed a better prediction performance in the training, internal validation, and external validation cohorts (C-index 0.78, 0.75, and 0.75). Calibration curves determined a good agreement between the predicted and actual overall survival. The radiomics-clinical nomogram and radiomics score might be non-invasive and reliable methods for the risk stratification in patients with hypopharyngeal squamous cell carcinoma. • An MRI-based radiomics model was constructed to evaluate of OS in patients with hypopharyngeal squamous cell carcinoma. • A radiomics-clinical nomogram that combined radiomics features and clinical characteristics was established. • Multi-cohort study validated the predictive performance of the radiomics-clinical nomogram to stratify patients with high risk in clinical practice.

收起

展开

DOI:

10.1007/s00330-021-08292-z

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(136)

参考文献(32)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读