Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels.

来自 PUBMED

作者:

Hallinan JTPDFeng MNg DSia SYTiong VTYJagmohan PMakmur AThian YL

展开

摘要:

To compare the performance of pneumothorax deep learning detection models trained with radiologist versus natural language processing (NLP) labels on the NIH ChestX-ray14 dataset. The ChestX-ray14 dataset consisted of 112,120 frontal chest radiographs with 5302 positive and 106, 818 negative labels for pneumothorax using NLP (dataset A). All 112,120 radiographs were also inspected by 4 radiologists leaving a visually confirmed set of 5,138 positive and 104,751 negative for pneumothorax (dataset B). Datasets A and B were used independently to train 3 convolutional neural network (CNN) architectures (ResNet-50, DenseNet-121 and EfficientNetB3). All models' area under the receiver operating characteristic curve (AUC) were evaluated with the official NIH test set and an external test set of 525 chest radiographs from our emergency department. There were significantly higher AUCs on the NIH internal test set for CNN models trained with radiologist vs NLP labels across all architectures. AUCs for the NLP/radiologist-label models were 0.838 (95%CI:0.830, 0.846)/0.881 (95%CI:0.873,0.887) for ResNet-50 (p = 0.034), 0.839 (95%CI:0.831,0.847)/0.880 (95%CI:0.873,0.887) for DenseNet-121, and 0.869 (95%CI: 0.863,0.876)/0.943 (95%CI: 0.939,0.946) for EfficientNetB3 (p ≤0.001). Evaluation with the external test set also showed higher AUCs (p <0.001) for the CNN models trained with radiologist versus NLP labels across all architectures. The AUCs for the NLP/radiologist-label models were 0.686 (95%CI:0.632,0.740)/0.806 (95%CI:0.758,0.854) for ResNet-50, 0.736 (95%CI:0.686, 0.787)/0.871 (95%CI:0.830,0.912) for DenseNet-121, and 0.822 (95%CI: 0.775,0.868)/0.915 (95%CI: 0.882,0.948) for EfficientNetB3. We demonstrated improved performance and generalizability of pneumothorax detection deep learning models trained with radiologist labels compared to models trained with NLP labels.

收起

展开

DOI:

10.1016/j.acra.2021.09.013

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(255)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读