Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker.

来自 PUBMED

作者:

Mehmood SMuneer MATahir MJaved MTMahmood TAfridi MSPakar NPAbbasi HAMunis MFHChaudhary HJ

展开

摘要:

Plant growth-promoting rhizobacteria (PGPR) represent a set of microorganisms that play significant role in improving plant growth and controlling the phytopathogens. Unpredictable performance after the application of PGPR has been observed when these were shifted from in-vitro to in-vivo conditions due to the prevalence of various abiotic stress conditions. During growing period, the potato crop is subjected to a combination of biotic and abiotic stresses. Rhizoctonia solani, a soil-borne plant pathogen, causes reduced vigor and yield of potato crop worldwide. In the current study, multi-stress-tolerant rhizobacterial strain, Bacillus subtilis PM32, was isolated from field-grown potato with various plant growth promoting (PGP) traits including zinc and potassium solubilization, biological nitrogen fixation, ammonia and siderophore, as well as extracellular enzyme productions (cellulase, catalase, amylase, protease, pectinase, and chitinase). The strain PM32 exhibited a distinct potential to support plant growth by demonstrating production of indole-3-acetic acid (102.6 μM/mL), ACC-deaminase activity (1.63 μM of α-ketobutyrate/h/mg protein), and exopolysaccharides (2.27 mg/mL). By retarding mycelial growth of R. solani the strain PM32 drastically reduced pathogenicity of R. solani. The strain PM32 also suppressed the pathogenic activity significantly by impeding mycelial expansion of R. solani with inhibition co-efficient of 49.87. The B. subtilis PM32 also depicted significant tolerance towards salt, heavy metal (Pb), heat and drought stress. PCR based amplification of ituC and acds genes coding for iturin and ACC-deaminase activity respectively indicated potential of strain PM32 for lipopeptides production and ACC deaminase enzyme activity. Results of both in-vitro and pot experiments under greenhouse conditions depicted the efficiency of B. subtilis PM32 as a promising bio-control agent for R. solani infection together with enhanced growth of potato plants as deciphered from biomass accumulation, chlorophyll a, b, and carotenoid contents. Therefore, it was envisioned that application of indigenous multi-stress tolerant PGPR may serve to induce biotic and abiotic stress tolerance in crops/plants for pathogen control and sustainable global food supply. The online version contains supplementary material available at 10.1007/s12298-021-01067-2.

收起

展开

DOI:

10.1007/s12298-021-01067-2

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(111)

参考文献(39)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读