Zinc Promotes Microglial Autophagy Through NLRP3 Inflammasome Inactivation via XIST/miR-374a-5p Axis in Spinal Cord Injury.

来自 PUBMED

作者:

Zhao XSun JYuan YLin SLin JMei X

展开

摘要:

Zinc has reported to play a neuroprotective role in the development of spinal cord injury (SCI). The protective mechanism of zinc remains to be uncovered. The aim of the current study was to investigate the neuroprotective mechanism of zinc in the progression of SCI. The C57BL/6J mouse SCI model was established to confirm the protective role of zinc in vivo, while the cellular model was induced in mouse microglial BV2 cells by using lipopolysaccharide (LPS). The expression levels of XIST, miR-374a-5p and NLRP3 inflammasome as well as the autophagy-related proteins were detected using real-time PCR and immunoblotting. Cell viability was assessed by CCK-8 assay. Apoptosis was evaluated by TUNEL staining, flow cytometry, the determination of apoptosis-related proteins. The target relationship was confirmed by luciferase reporter assays. Zinc improved locomotor function in SCI mice and alleviated LPS-induced BV2 cell injuries by inhibiting apoptosis and initiating autophagy processes. XIST and NLRP3 inflammasome was upregulated while miR-374a-5p was downregulated in spinal cords of SCI mice and LPS-treated BV2 cells. All these effects were inhibited by Zinc treatment. XIST knockdown triggered microglial autophagy-mediated NLRP3 inactivation in LPS-induced BV2 cells by regulating miR-374a-5p. Zinc treatment protected BV2 cells from LPS-induced cell injury by the downregulation of XIST. This process might be through autophagy‑mediated NLRP3 inflammasome inactivation by targeting miR-374a-5p. Zinc downregulates XIST and induces neuroprotective effects against SCI by promoting microglial autophagy-induced NLRP3 inflammasome inactivation through regulating miR-374a-5p. Our finding provides novel opportunities for the understanding of zinc-related therapy of SCI.

收起

展开

DOI:

10.1007/s11064-021-03441-8

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(258)

参考文献(3)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读