IFITM1, CD10, SMA, and h-caldesmon as a helpful combination in differential diagnosis between endometrial stromal tumor and cellular leiomyoma.

来自 PUBMED

作者:

Zhao WCui MZhang RShen XXiong XJi XTao LJia WPang LSun ZWang CZou H

展开

摘要:

The differential diagnosis of endometrial stromal tumor (EST) and uterine cellular leiomyoma (CL) remains a challenge in clinical practice, especially low grade endometrial stromal sarcoma (ESS) and CL, suggesting the need for novel immunomarkers panels for differential diagnosis. Interferon-induced transmembrane protein 1 (IFITM1) is a novel immunomarker for endometrial stromal cells, h-caldesmon is an immunomarker for smooth muscle cells and has a higher specificity than smooth muscle actin (SMA). So this study aimed to evaluate whether IFITM1, cluster of differentiation 10(CD10), SMA, and h-caldesmon are useful biomarker combinations for the differential diagnosis of EST and CL. Tissue microarrays were used to detect IFITM1, CD10, SMA, and h-caldesmon immunohistochemical staining in 30 EST and 33 CL cases. The expressions of IFITM1 and CD10 were high in EST (86.7 and 63.3%, respectively) but low in CL (18.2 and 21.2%), whereas those of h-caldesmon and SMA were high in CL (87.9 and 100%) and low in EST (6.9 and 40%). In diagnosing EST, IFITM1 shows better sensitivity and specificity (86.7 and 81.8%, respectively) than CD10 (63.3 and 78.8%). The specificity of h-caldesmon in diagnosing CL was significantly higher (93.1%) than that of SMA (60%). When all four antibodies were combined for the differential diagnosis, the area-under-the-curve (AUC) predictive value was 0.995. The best combination for diagnosing EST was IFITM1 (+) or CD10 (+) and h-caldesmon (-) (sensitivity 86.7%, specificity 93.9%). The best combination for diagnosing CL were h-caldesmon (+) and SMA (+) (sensitivity 87.9%, specificity 100%). IFITM1, CD10, SMA, and h-caldesmon are a good combination for the differential diagnosis of EST and CL.

收起

展开

DOI:

10.1186/s12885-021-08781-w

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(128)

参考文献(26)

引证文献(7)

来源期刊

BMC CANCER

影响因子:4.633

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读