Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of Ginkgo seed slices: Mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption.

来自 PUBMED

作者:

Boateng IDYang XM

展开

摘要:

This study evaluated the mass transfer, drying, and rehydration kinetics (drying and rehydration curve, moisture diffusivity [Deff ]), energy consumption (specific energy consumption [SEC], moisture extraction rate (MER), and specific moisture extraction rate [SMER]), and mathematical modeling of infrared dried Ginkgo biloba seed (GBS) using the various nonthermal pretreatments namely: osmotic (OS), osmovacuum (V + OS), ultrasound (US, ginkgo seed immersed in a distilled water with US), and osmosonication (US + OS, ginkgo seeds immersed in an OS solution with US). Results showed that various pretreatments affected mass transfer, drying, and rehydration characteristics, and energy consumption, which was confirmed by principal component analysis. In terms of mass transfer, US pretreatment recorded the highest weight loss while the osmosonication pretreatment registered the highest solid gain. The entire drying process occurred in the falling-rate period. The Deff values were within the normal range of agroproducts (10-11 to 10-8 m2 /s). The modified Page-I and Weibull model best fitted the drying and rehydration kinetics, respectively, with the coefficient of determination (R2 ) > 0.991, root mean square error, residual sum of squares, and reduced chi-square closer to zero, compared with the other models. The untreated GBS (control) had the lowest energy efficiency (lowest SMER and MER) and the highest SEC than the pretreated GBS. Among the various pretreatments, the US pretreatment of GBS was superior, with the highest Deff , MER, SMER, and drying rate, and lowest drying time and SEC. Based on the findings, sequential US pretreatment and infrared drying is a feasible drying technique for GBS that could be used commercially. PRACTICAL APPLICATION: Ginkgo tree cultivation in China has exceeded market needs with 60,000 tons per annum of GBS produced. Hence, there is a compelling need to explore new chances to use GBS availability irrespective of the seasonality and address the problem where GBS utilization is limited to the early phases of home-cooked dishes. Although drying increases the shelf life of ginkgo seeds, there is a higher operation cost. Thus, pretreatment can reduce energy consumption and augment the product quality is ideal. This research reported the impact of nonthermal pretreatments on ginkgo seeds' mass transfer, drying, and rehydration characteristics. The present results will provide a comprehensive understanding of the engineering application of ginkgo seed pretreatment, allowing for the best technique to be selected.

收起

展开

DOI:

10.1111/1750-3841.15916

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(322)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读