Aconitine induces autophagy via activating oxidative DNA damage-mediated AMPK/ULK1 signaling pathway in H9c2 cells.

来自 PUBMED

作者:

Wang WJiang JHuang YPeng FHu TWu JPan XRao C

展开

摘要:

Aconitum species, with a medicinal history of 2000 years, was traditionally used in the treatment of rheumatism, arthritis, bruises, and pains. However, many studies have reported that Aconitum species can cause arrhythmia in experimental animals, resulting in myocardial fibrosis and cardiomyocyte damage. Cardiotoxicity is the main toxic effect of aconitine, but the detailed mechanism remains unclear. This study aimed to explore the effects and underlying mechanism of autophagy in H9c2 cardiomyocytes induced by aconitine. H9c2 cells were incubated with different concentrations of aconitine for 24 h, and the intervention sections were pretreated with various inhibitors for 1 h. The effects of aconitine on the oxidative DNA damage, autophagy and viability of H9c2 cells were evaluated by flow cytometry, confocal microscopy, enzyme-linked immunosorbent assay and Western blot. In H9c2 cells, the cell viability declined, LDH release rate, the number of autophagosomes, protein expression levels of LC3 and Beclin-1 increased significantly after 24 h of aconitine incubation. The pretreatment of autophagy inhibitor 3-MA decreased markedly autophagosomes and protein expression levels of LC3 and Beclin-1, which suggested that aconitine could induce cell autophagy. The significant increase of ROS and 8-OHdG showed that aconitine could cause oxidative DNA damage through ROS accumulation. Meanwhile, treatment of aconitine dramatically increased AMPKThr172 and ULK1Ser317 phosphorylation, and Compound C inhibited AMPKThr172 and ULK1Ser317 phosphorylation, which proved that aconitine induced autophagy via AMPK activation mediated ULK1 phosphorylation. Antioxidant NAC significantly reduced LDH, ROS and 8-OHdG, inhibited the phosphorylation of AMPKThr172 and ULK1Ser317, and down-regulated autophagosomes and proteins expression levels of LC3 and Beclin-1. Consequently, the inhibition of oxidative DNA damage and AMPK/ULK1 signaling pathway alleviated the aconitine-induced autophagic death of H9c2 cells. These results showed that aconitine induces autophagy of H9c2 cardiomyocytes by activating AMPK/ULK1 signaling pathway mediated by oxidative DNA damage. The autophagy induced by aconitine in cardiomyocytes is dependent on the activation of the AMPK pathway, which may provide novel insights into the prevention of aconitine-related toxicity.

收起

展开

DOI:

10.1016/j.jep.2021.114631

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(440)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读