METTL3-Mediated lncRNA m(6)A Modification in the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Induced by NEL-Like 1 Protein.

来自 PUBMED

作者:

Song YPan YWu MSun WLuo LZhao ZLiu J

展开

摘要:

This study aimed to explore the regulatory mechanism of methyltransferase3 (METTL3) -mediated long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification in the osteogenic differentiation of human adipose-derived stem cells (hASCs) induced by NEL-like 1 protein (NELL-1). Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and high- throughput sequencing for RNA (RNA-seq) were performed on hASCs. Osteogenic ability was detected by alkaline phosphatase (ALP) staining, Alizarin Red S(ARS) staining, ALP quantification and Quantitative real-time polymerase chain reaction analysis (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted the osteogenesis-related pathways enriched for the lncRNAs and identified the target lncRNAs. After overexpression and knockdown of METTL3, methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and qRT-PCR were used to detect the levels of m6A modification and the expression of the target lncRNA, and the binding of both was confirmed by RNA binding protein immunoprecipitation (RIP) assay. The effects of lncRNA and METTL3 on phosphorylation of the key proteins of the pathway were detected by western blot analysis. In vitro experiments showed that METTL3 can promote osteogenic differentiation and that its expression level is upregulated. KEGG pathway analysis predicted that lncRNAs with differentially upregulated methylated peaks were enriched mostly in the mitogen-activated protein kinase (MAPK) signaling pathway, in which Serine/threonine protein kinase 3 (STK3) was the predicted target gene of the lncRNA RP11-44 N12.5. The m6A modification and expression of RP11-44 N12.5 were both regulated by METTL3. Subsequently, lncRNA RP11-44 N12.5 and METTL3 were found to regulate the phosphorylation levels of three key proteins in the MAPK signaling pathway, ERK, JNK and p38. This study shows, for the first time, that METTL3 can activate the MAPK signaling pathway by regulating the m6A modification and expression of a lncRNA, thereby enhancing the osteogenic differentiation of hASCs.

收起

展开

DOI:

10.1007/s12015-021-10245-4

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(423)

参考文献(46)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读