METTL3-mediated RNA m6A Hypermethylation Promotes Tumorigenesis and GH Secretion of Pituitary Somatotroph Adenomas.

来自 PUBMED

作者:

Chang MWang ZGao JYang CFeng MNiu YTong WMBao XWang R

展开

摘要:

Pituitary growth hormone-secreting (GH) pituitary adenomas (PAs) cause mass effects and dysregulated hypersecretion of GH. However, somatic mutation burden is low in PAs. While progress has been made in identifying the epigenetic changes involved in GH-PA initiation, the precise details of its tumorigenesis in GH-PA patients remains to be elucidated. As N6-methyladenosine (m6A) has been shown to often play a critical role in various tumors, it represents a possible initiation point for the tumorigenesis of pituitary adenomas. However, the role of RNA methylation in GH adenomas remains unclear. Protein expression of m6A regulators was measured by immunohistochemistry. Global levels and distribution of m6A methylation were separately analyzed by m6A enzyme-linked immunosorbent assay and m6A sequencing (m6A-seq). RNA interference and lentivirus knockdown system were used to investigate the role of methyltransferase-like 3 (METTL3) and its m6A- dependent regulatory mechanism in tumor progression and GH secretion. We show that both METTL3 messenger RNA and protein expression are elevated in GH-PA samples when compared with both normal pituitary tissue specimens and nonsecreting pituitary adenomas. Levels of m6A modification increased in GH-PAs, and hypermethylated RNAs are involved in hormone secretion and cell development. Knockdown of METTL3 in GH3 cell line resulted in decreased cell growth and GH secretion. Importantly, we found that GNAS and GADD45γ act as the downstream targets in this process. Our findings strongly suggest that m6A methyltransferase METTL3 promotes tumor growth and hormone secretion by increasing expression of GNAS and GADD45γ in a m6A-dependent manner. Thus, METTL3 and the methylated RNAs constitute suitable targets for clinical treatment of GH-PAs.

收起

展开

DOI:

10.1210/clinem/dgab652

被引量:

7

年份:

2022

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(697)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读