MELD 3.0: The Model for End-Stage Liver Disease Updated for the Modern Era.

来自 PUBMED

作者:

Kim WRMannalithara AHeimbach JKKamath PSAsrani SKBiggins SWWood NLGentry SEKwong AJ

展开

摘要:

The Model for End-Stage Liver Disease (MELD) has been established as a reliable indicator of short-term survival in patients with end-stage liver disease. The current version (MELDNa), consisting of the international normalized ratio and serum bilirubin, creatinine, and sodium, has been used to determine organ allocation priorities for liver transplantation in the United States. The objective was to optimize MELD further by taking into account additional variables and updating coefficients with contemporary data. All candidates registered on the liver transplant wait list in the US national registry from January 2016 through December 2018 were included. Uni- and multivariable Cox models were developed to predict survival up to 90 days after wait list registration. Model fit was tested using the concordance statistic (C-statistic) and reclassification, and the Liver Simulated Allocation Model was used to estimate the impact of replacing MELDNa with the new model. The final multivariable model was characterized by (1) additional variables of female sex and serum albumin, (2) interactions between bilirubin and sodium and between albumin and creatinine, and (3) an upper bound for creatinine at 3.0 mg/dL. The final model (MELD 3.0) had better discrimination than MELDNa (C-statistic, 0.869 vs 0.862; P < .01). Importantly, MELD 3.0 correctly reclassified a net of 8.8% of decedents to a higher MELD tier, affording them a meaningfully higher chance of transplantation, particularly in women. In the Liver Simulated Allocation Model analysis, MELD 3.0 resulted in fewer wait list deaths compared to MELDNa (7788 vs 7850; P = .02). MELD 3.0 affords more accurate mortality prediction in general than MELDNa and addresses determinants of wait list outcomes, including the sex disparity.

收起

展开

DOI:

10.1053/j.gastro.2021.08.050

被引量:

111

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(106)

参考文献(20)

引证文献(111)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读