Image-guided glucocorticoid injection versus injection without image guidance for shoulder pain.
Despite widespread use, our 2012 Cochrane review did not confirm that use of imaging to guide glucocorticoid injection for people with shoulder pain improves its efficacy.
To update our review and assess the benefits and harms of image-guided glucocorticoid injection compared to non-image-guided injection for patients with shoulder pain.
We updated the search of the Cochrane Central Register of Controlled Trials (CENTRAL, via Ovid), MEDLINE (Ovid), Embase (Ovid) and clinicaltrials.gov to 15 Feb 2021, and the World Health Organisation International Clinical Trials Registry Platform (http://www.who.int/trialsearch/Default.aspx) to 06 July 2020. We also screened reference lists of retrieved review articles and trials to identify potentially relevant studies.
We included randomised or quasi-randomised controlled trials that compared image-guided glucocorticoid injection to injection without image guidance (either landmark-guided or intramuscular) injection in patients with shoulder pain (rotator cuff disease, adhesive capsulitis or mixed or undefined shoulder pain). Major outcomes were pain, function, proportion of participants with treatment success, quality of life, adverse events, serious adverse events and withdrawals due to adverse events. Minor outcomes were shoulder range of motion and proportion of participants requiring surgery or additional injections. There were no restrictions on language or date of publication.
We used standard methodologic procedures expected by Cochrane.
Nineteen trials were included (1035 participants). Fourteen trials included participants with rotator cuff disease, four with adhesive capsulitis, and one with mixed or undefined shoulder pain. Trial size varied from 28 to 256 participants, most participants were female, mean age ranged between 31 and 60 years, and mean symptom duration varied from 2 to 23 months. Two trials were at low risk of bias for all criteria. The most notable sources of bias in the remaining trials included performance bias and detection bias. Moderate-certainty evidence (downgraded for bias) indicates that ultrasound-guided injection probably provides little or no clinically important benefits compared with injection without guidance with respect to pain (15 trials) or function (14 trials) at three to six weeks follow-up. It may not improve quality of life (2 trials, low-certainty evidence, downgraded due to potential for bias and imprecision) and we are uncertain about the effect of ultrasound-guided injection on participant-rated treatment success due to very low-certainty evidence (downgraded for bias, inconsistency and imprecision). Mean pain (scale range 0 to 10, higher scores indicate more pain) was 3.1 points with injection without image guidance and 0.5 points better (0.2 points better to 0.8 points better; 1003 participants, 15 trials) with an ultrasound-guided injection. This represents a slight difference for pain (0.5 to 1.0 points on a 0 to 10 scale). Mean function (scale range 0 to 100, higher scores indicate better function) was 68 points with injection without image guidance and 2.4 points better (0.2 points worse to 5.1 points better; 895 participants, 14 trials) with an ultrasound-guided injection. Mean quality of life (scale range 0 to 100, higher scores indicate better quality of life) was 65 with injection without image guidance and 2.8 points better (0.7 worse to 6.4 better; 220 participants, 2 trials) with an ultrasound-guided injection. In five trials (350 participants), 101/175 (or 606 per 1000) people in the ultrasound-guided group reported treatment success compared with 68/175 (or 389 per 1000) people in the group injected without image guidance (RR 1.56 (95% CI 0.89 to 2.75)), an absolute difference of 22% more reported success (4% fewer to 62% more). Low-certainty evidence (downgraded for bias and imprecision) indicates that ultrasound-guided injections may not reduce the risk of adverse events compared to injections without image guidance. In five trials (402 participants), 38/200 (or 181 per 1000) people in the ultrasound-guided group reported adverse events compared with 51/202 (or 252 per 1000) in the non-image-guided injection group (RR 0.72 (95% CI 0.4 to 1.28)), an absolute difference of 7% fewer adverse events (15% fewer to 7% more). Five trials reported that there were no serious adverse events. The remaining trials did not report serious adverse events. One trial reported that 1/53 (or 19 per 1000) in the injection without image guidance group and 0/53 in the ultrasound-guided group withdrew due to adverse events. Sensitivity analyses indicate that the effects for pain and function may have been influenced by selection bias, and the effects for function may have been influenced by detection bias. The test for subgroup differences indicated there were unlikely to be differences in pain and function across different shoulder conditions.
Our updated review does not support use of image guidance for injections in the shoulder. Moderate-certainty evidence indicates that ultrasound-guided injection in the treatment of shoulder pain probably provides little or no benefit over injection without imaging in terms of pain or function and low-certainty evidence indicates there may be no difference in quality of life. We are uncertain if ultrasound-guided injection improves participant-rated treatment success, due to very low-certainty evidence. Low-certainty evidence also suggests ultrasound-guided injection may not reduce the risk of adverse events compared with non-image-guided injection. No serious adverse events were reported in any trial. The lack of significant benefit of image guidance over injection without image guidance to improve patient-relevant outcomes or reduce harms, suggests that any added cost of image guidance appears unjustified.
Zadro J
,Rischin A
,Johnston RV
,Buchbinder R
... -
《Cochrane Database of Systematic Reviews》
Surgery for rotator cuff tears.
This review is one in a series of Cochrane Reviews of interventions for shoulder disorders.
To synthesise the available evidence regarding the benefits and harms of rotator cuff repair with or without subacromial decompression in the treatment of rotator cuff tears of the shoulder.
We searched the CENTRAL, MEDLINE, Embase, Clinicaltrials.gov and WHO ICRTP registry unrestricted by date or language until 8 January 2019.
Randomised controlled trials (RCTs) including adults with full-thickness rotator cuff tears and assessing the effect of rotator cuff repair compared to placebo, no treatment, or any other treatment were included. As there were no trials comparing surgery with placebo, the primary comparison was rotator cuff repair with or without subacromial decompression versus non-operative treatment (exercises with or without glucocorticoid injection). Other comparisons were rotator cuff repair and acromioplasty versus rotator cuff repair alone, and rotator cuff repair and subacromial decompression versus subacromial decompression alone. Major outcomes were mean pain, shoulder function, quality of life, participant-rated global assessment of treatment success, adverse events and serious adverse events. The primary endpoint for this review was one year.
We used standard methodologic procedures expected by Cochrane.
We included nine trials with 1007 participants. Three trials compared rotator cuff repair with subacromial decompression followed by exercises with exercise alone. These trials included 339 participants with full-thickness rotator cuff tears diagnosed with magnetic resonance imaging (MRI) or ultrasound examination. One of the three trials also provided up to three glucocorticoid injections in the exercise group. All surgery groups received tendon repair with subacromial decompression and the postoperative exercises were similar to the exercises provided for the non-operative groups. Five trials (526 participants) compared repair with acromioplasty versus repair alone; and one trial (142 participants) compared repair with subacromial decompression versus subacromial decompression alone. The mean age of trial participants ranged between 56 and 68 years, and females comprised 29% to 56% of the participants. Symptom duration varied from a mean of 10 months up to 28 months. Two trials excluded tears with traumatic onset of symptoms. One trial defined a minimum duration of symptoms of six months and required a trial of conservative therapy before inclusion. The trials included mainly repairable full-thickness supraspinatus tears, six trials specifically excluded tears involving the subscapularis tendon. All trials were at risk of bias for several criteria, most notably due to lack of participant and personnel blinding, but also for other reasons such as unclearly reported methods of random sequence generation or allocation concealment (six trials), incomplete outcome data (three trials), selective reporting (six trials), and other biases (six trials). Our main comparison was subacromial decompression versus non-operative treatment and results are reported for the 12 month follow up. At one year, moderate-certainty evidence (downgraded for bias) from 3 trials with 258 participants indicates that surgery probably provides little or no improvement in pain; mean pain (range 0 to 10, higher scores indicate more pain) was 1.6 points with non-operative treatment and 0.87 points better (0.43 better to 1.30 better) with surgery.. Mean function (zero to 100, higher score indicating better outcome) was 72 points with non-operative treatment and 6 points better (2.43 better to 9.54 better) with surgery (3 trials; 269 participants), low-certainty evidence (downgraded for bias and imprecision). Participant-rated global success rate was 873/1000 after non-operative treatment and 943/1000 after surgery corresponding to (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.96 to 1.22; low-certainty evidence (downgraded for bias and imprecision). Health-related quality of life was 57.5 points (SF-36 mental component score, 0 to 100, higher score indicating better quality of life) with non-operative treatment and 1.3 points worse (4.5 worse to 1.9 better) with surgery (1 trial; 103 participants), low-certainty evidence (downgraded for bias and imprecision). We were unable to estimate the risk of adverse events and serious adverse events as only one event was reported across the trials (very low-certainty evidence; downgraded once due to bias and twice due to very serious imprecision).
At the moment, we are uncertain whether rotator cuff repair surgery provides clinically meaningful benefits to people with symptomatic tears; it may provide little or no clinically important benefits with respect to pain, function, overall quality of life or participant-rated global assessment of treatment success when compared with non-operative treatment. Surgery may not improve shoulder pain or function compared with exercises, with or without glucocorticoid injections. The trials included have methodology concerns and none included a placebo control. They included participants with mostly small degenerative tears involving the supraspinatus tendon and the conclusions of this review may not be applicable to traumatic tears, large tears involving the subscapularis tendon or young people. Furthermore, the trials did not assess if surgery could prevent arthritic changes in long-term follow-up. Further well-designed trials in this area that include a placebo-surgery control group and long follow-up are needed to further increase certainty about the effects of surgery for rotator cuff tears.
Karjalainen TV
,Jain NB
,Heikkinen J
,Johnston RV
,Page CM
,Buchbinder R
... -
《Cochrane Database of Systematic Reviews》
Shock wave therapy for rotator cuff disease with or without calcification.
Shock wave therapy has seen widespread use since the 1990s to treat various musculoskeletal disorders including rotator cuff disease, but evidence of its efficacy remains equivocal.
To determine the benefits and harms of shock wave therapy for rotator cuff disease, with or without calcification, and to establish its usefulness in the context of other available treatment options.
We searched Ovid MEDLINE, Ovid Embase, CENTRAL, ClinicalTrials.gov and the WHO ICTRP up to November 2019, with no restrictions on language. We reviewed the reference lists of retrieved trials to identify potentially relevant trials.
We included randomised controlled trials (RCTs) and controlled clinical trials (CCTs) that used quasi-randomised methods to allocate participants, investigating participants with rotator cuff disease with or without calcific deposits. We included trials of comparisons of extracorporeal or radial shock wave therapy versus any other intervention. Major outcomes were pain relief greater than 30%, mean pain score, function, patient-reported global assessment of treatment success, quality of life, number of participants experiencing adverse events and number of withdrawals due to adverse events.
Two review authors independently selected studies for inclusion, extracted data and assessed the certainty of evidence using GRADE. The primary comparison was shock wave therapy compared to placebo.
Thirty-two trials (2281 participants) met our inclusion criteria. Most trials (25) included participants with rotator cuff disease and calcific deposits, five trials included participants with rotator cuff disease and no calcific deposits, and two trials included a mixed population of participants with and without calcific deposits. Twelve trials compared shock wave therapy to placebo, 11 trials compared high-dose shock wave therapy (0.2 mJ/mm² to 0.4 mJ/mm² and above) to low-dose shock wave therapy. Single trials compared shock wave therapy to ultrasound-guided glucocorticoid needling, ultrasound-guided hyaluronic acid injection, transcutaneous electric nerve stimulation (TENS), no treatment or exercise; dual session shock wave therapy to single session therapy; and different delivery methods of shock wave therapy. Our main comparison was shock wave therapy versus placebo and results are reported for the 3 month follow up. All trials were susceptible to bias; including selection (74%), performance (62%), detection (62%), and selective reporting (45%) biases. No trial measured participant-reported pain relief of 30%. However, in one trial (74 participants), at 3 months follow up, 14/34 participants reported pain relief of 50% or greater with shock wave therapy compared with 15/40 with placebo (risk ratio (RR) 1.10, 95% confidence interval (CI) 0.62 to 1.94); low-quality evidence (downgraded for bias and imprecision). Mean pain (0 to 10 scale, higher scores indicate more pain) was 3.02 points in the placebo group and 0.78 points better (0.17 better to 1.4 better; clinically important change was 1.5 points) with shock wave therapy (9 trials, 608 participants), moderate-quality evidence (downgraded for bias). Mean function (scale 0 to 100, higher scores indicate better function) was 66 points with placebo and 7.9 points better (1.6 better to 14 better, clinically important difference 10 points) with shock wave therapy (9 trials, 612 participants), moderate-quality evidence (downgraded for bias). Participant-reported success was reported by 58/150 people in shock wave therapy group compared with 35/137 people in placebo group (RR 1.59, 95% CI 0.87 to 2.91; 6 trials, 287 participants), low-quality evidence (downgraded for bias and imprecision). None of the trials measured quality of life. Withdrawal rate or adverse event rates may not differ between extracorporeal shock wave therapy and placebo, but we are uncertain due to the small number of events. There were 11/34 withdrawals in the extracorporeal shock wave therapy group compared with 13/40 withdrawals in the placebo group (RR 0.75, 95% CI 0.43 to 1.31; 7 trials, 581 participants) low-quality evidence (downgraded for bias and imprecision); and 41/156 adverse events with extracorporeal shock wave therapy compared with 10/139 adverse events in the placebo group (RR 3.61, 95% CI 2.00 to 6.52; 5 trials, 295 participants) low-quality evidence (downgraded for bias and imprecision). Subgroup analyses indicated that there were no between-group differences in pain and function outcomes in participants who did or did not have calcific deposits in the rotator cuff.
Based upon the currently available low- to moderate-certainty evidence, there were very few clinically important benefits of shock wave therapy, and uncertainty regarding its safety. Wide clinical diversity and varying treatment protocols means that we do not know whether or not some trials tested subtherapeutic doses, possibly underestimating any potential benefits. Further trials of extracorporeal shock wave therapy for rotator cuff disease should be based upon a strong rationale and consideration of whether or not they would alter the conclusions of this review. A standard dose and treatment protocol should be decided upon before further research is conducted. Development of a core set of outcomes for trials of rotator cuff disease and other shoulder disorders would also facilitate our ability to synthesise the evidence.
Surace SJ
,Deitch J
,Johnston RV
,Buchbinder R
... -
《Cochrane Database of Systematic Reviews》