Fast and SNP-aware short read alignment with SALT.

来自 PUBMED

作者:

Quan WLiu BWang Y

展开

摘要:

DNA sequence alignment is a common first step in most applications of high-throughput sequencing technologies. The accuracy of sequence alignments directly affects the accuracy of downstream analyses, such as variant calling and quantitative analysis of transcriptome; therefore, rapidly and accurately mapping reads to a reference genome is a significant topic in bioinformatics. Conventional DNA read aligners map reads to a linear reference genome (such as the GRCh38 primary assembly). However, such a linear reference genome represents the genome of only one or a few individuals and thus lacks information on variations in the population. This limitation can introduce bias and impact the sensitivity and accuracy of mapping. Recently, a number of aligners have begun to map reads to populations of genomes, which can be represented by a reference genome and a large number of genetic variants. However, compared to linear reference aligners, an aligner that can store and index all genetic variants has a high cost in memory (RAM) space and leads to extremely long run time. Aligning reads to a graph-model-based index that includes all types of variants is ultimately an NP-hard problem in theory. By contrast, considering only single nucleotide polymorphism (SNP) information will reduce the complexity of the index and improve the speed of sequence alignment. The SNP-aware alignment tool (SALT) is a fast, memory-efficient, and SNP-aware short read alignment tool. SALT uses 5.8 GB of RAM to index a human reference genome (GRCh38) and incorporates 12.8M UCSC common SNPs. Compared with a state-of-the-art aligner, SALT has a similar speed but higher accuracy. Herein, we present an SNP-aware alignment tool (SALT) that aligns reads to a reference genome that incorporates an SNP database. We benchmarked SALT using simulated and real datasets. The results demonstrate that SALT can efficiently map reads to the reference genome with significantly improved accuracy. Incorporating SNP information can improve the accuracy of read alignment and can reveal novel variants. The source code is freely available at https://github.com/weiquan/SALT .

收起

展开

关键词:

AlignmentNGSSNP-aware

DOI:

10.1186/s12859-021-04088-6

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(531)

参考文献(17)

引证文献(0)

来源期刊

BMC BIOINFORMATICS

影响因子:3.304

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读