-
Double-vertebral segment SBRT via novel ring-mounted Halcyon Linac: Plan quality, delivery efficiency and accuracy.
To evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter/multi-target (SIMT) volumetric modulated arc therapy (VMAT) of double-vertebral segments stereotactic body radiation therapy (SBRT) on Halcyon ring delivery system (RDS). In-house multi-target end-to-end phantom testing and independent dose verification using the MD Anderson's single-isocenter/multi-target (lung/spine targets) thorax phantom were completed. Six previously treated patients with 2-vertebral segments on thoracic and/or lumber spine were replanned on Halcyon RDS with 6MV-FFF beam using a single-isocenter placed between the vertebral segments. Three full VMAT arcs with 0° and ±10° collimator angles and advanced Acuros-based dose engine for heterogeneity corrections were used. Prescription was 35 Gy in 5 fractions to each vertebral-segment, simultaneously. For comparison, Halcyon VMAT-SBRT plans were retrospectively created on SBRT-dedicated Truebeam with a 6MV-FFF beam using identical planning geometry and optimization objectives. Target coverage, conformity index (CI), heterogeneity index (HI), gradient index (GI), dose to 2-cm away from each target (D2-cm), and dose to adjacent organs-at-risk (OAR) were evaluated per NRG-BR002 protocol. Treatment delivery parameters were evaluated for both plans. In-house phantom measurements showed acceptable spatial accuracy (< 1mm within 5-cm from the isocenter) of conebeam CT-guided Halcyon SBRT treatments. The MD Anderson phantom irradiation credentialing results met IROC requirements for protocol patients. Mean isocenter-to-tumor center distance was 3.3 ± 0.6-cm (range 2.4 to 4.3-cm). Mean combined PTV was 57.3 ± 31.3 cc (range 20.1 to 99.9 cc). Both Halcyon and Truebeam SIMT-VMAT plans met NRG-BR002 compliance criteria and show similar CI, HI, GI, D2-cm. Maximal and volumetric doses to adjacent OAR including dose to partial spinal cord were lower with Halcyon RDS. Average total monitor units, modulation, and overall treatment time were lower with Halcyon plans by 130 MU, 0.2, 3.8 min, respectively, with similar beam-on time. Average pre-treatment patient-specific portal-dosimetry QA results on Halcyon showed a high pass rate of 99.6%, compared to SBRT-dedicated Truebeam pass rate of 96.8%, for 2%/2 mm clinical gamma passing criteria, suggesting more accurate treatment delivery on Halcyon RDS. SBRT treatment of double-vertebral segments via SIMT-VMAT plans on Halcyon for selected patients is feasible and dosimetrically superior to Truebeam Linac. Faster treatment delivery (<10 min) of double-vertebral segment SBRT on Halcyon could reduce patient intolerance due to severe back pain, potentially reduce intra-fraction motion errors, and improve patient throughput, and clinic workflow.
Pokhrel D
,Stephen J
,Webster A
,Bernard ME
... -
《-》
-
SBRT treatment of abdominal and pelvic oligometastatic lymph nodes using ring-mounted Halcyon Linac.
This work seeks to evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter volumetric modulated arc therapy (VMAT) of abdominal/pelvic oligometastatic lymph nodes (LNs) stereotactic body radiation therapy (SBRT) on Halcyon Linac.
After completing the in-house multitarget end-to-end phantom testing and independent dose verification using MD Anderson's single-isocenter/multi-target (lung and spine target inserts) thorax phantom, eight patients with two to three abdominal/pelvic oligometastatic LNs underwent highly conformal single-isocenter VMAT-SBRT treatment using the Halcyon Linac 6MV flattening filter free (FFF) beam. Targets were identified using an Axumin PET/CT scan co-registered with planning CT images and a single-isocenter was placed between/among the targets. Doses between 25 and 36.25 Gy in 5 fractions were delivered. Patients were treated every other day. Plans were calculated in Eclipse with advanced AcurosXB algorithm for heterogeneity corrections. For comparison, Halcyon VMAT-SBRT plans were retrospectively generated for SBRT-dedicated TrueBeam with a 6MV-FFF beam using identical planning geometry and objectives. Target coverage, conformity index (CI), dose to 2 cm away from each target (D2cm) and dose to adjacent organs-at-risk (OAR) were evaluated. Additionally, various treatment delivery parameters including beam-on time were recorded.
Phantom measurements showed acceptable spatial accuracy of conebeam CT-guided Halcyon SBRT treatments including compliance with MD Anderson's single-isocenter/multi-targets phantom credentialing results. For patients, the mean isocenter to tumor center distance was 3.4 ± 1.2 cm (range, 1.5-4.8 cm). The mean combined PTV was 18.9 ± 10.9 cc (range, 5.6-39.5 cc). There was no clinically significant difference in dose to LNs, CI, D2cm and maximal doses to OAR between single-isocenter Halcyon and Truebeam VMAT-SBRT plans, although, Halcyon plans provided preferably lower maximal dose to adjacent OAR. Additionally, total monitor units, beam-on time and overall treatment time was lower with Halcyon plans. Halcyon's portal dosimetry demonstrated a high pass rate of 98.1 ± 1.6% for clinical gamma passing criteria of 2%/2 mm.
SBRT treatment of abdominal/pelvic oligometastatic LNs with single-isocenter VMAT on Halcyon was dosimetrically equivalent to TrueBeam. Faster treatment delivery to oligometastatic LNs via single-isocenter Halcyon VMAT can improve clinic workflow and patient compliance, potentially reducing intrafraction motion errors for well-suited patients. Clinical follow-up of these patients is ongoing.
Pokhrel D
,Webster A
,Stephen J
,St Clair W
... -
《Journal of Applied Clinical Medical Physics》
-
Feasibility of using ring-mounted Halcyon Linac for single-isocenter/two-lesion lung stereotactic body radiation therapy.
To demonstrate the plan quality and delivery efficiency of volumetric-modulated arc therapy (VMAT) with the Halcyon Linac ring delivery system (RDS) in the treatment of single-isocenter/two-lesion lung stereotactic body radiation therapy (SBRT).
Sixteen previously treated non-coplanar VMAT single-isocenter/two-lesion lung SBRT plans delivered with SBRT-dedicated C-arm TrueBeam Linac were selected. Prescribed dose was 50 Gy to each lesion over five fractions with treatment delivery every other day and AcurosXB algorithm as the final dose calculation algorithm. TrueBeam single-isocenter plans were reoptimized for Halcyon Linac with coplanar geometry. Both TrueBeam and Halcyon plans were normalized for identical combined target coverage and evaluated. Conformity indices (CIs), heterogeneity index (HI), gradient index (GI), gradient distance (GD), and D2cm were compared. The normal lung V5Gy, V10Gy, V20Gy, mean lung dose (MLD), and dose to organs at risk (OAR) were evaluated. Treatment delivery parameters, including beam-on time, were recorded.
Halcyon plans were statistically similar to clinically delivered TrueBeam plans. No statistical differences in target conformity, dose heterogeneity, or intermediate-dose spillage were observed (all, p > 0.05). Halcyon plans, on average, demonstrated statistically insignificant reduced maximum dose to most adjacent OAR and normal lung. However, Halcyon yielded statistically significant lower maximal dose to the ribs (p = 0.041) and heart (p = 0.026), dose to 1 cc of ribs (p = 0.035) and dose to 5 cc of esophagus (p = 0.043). Plan complexity slightly increased as seen in the average increase of total monitor units, modulation factor, and beam-on time by 480, 0.48, and 2.78 min, respectively. However, the estimated overall treatment time was reduced by 2.22 min, on average. Mean dose delivery accuracy of clinical TrueBeam plans and the corresponding Halcyon plans was 98.9 ± 0.85% (range: 98.1%-100%) and 98.45 ± 0.99% (range: 97.9%-100%), respectively, demonstrating similar treatment delivery accuracy.
SBRT treatment of synchronous lung lesions via single-isocenter VMAT on Halcyon RDS is feasible and dosimetrically equivalent to clinically delivered TrueBeam plans. Halcyon provides excellent plan quality and shorter overall treatment time that may improve patient compliance, reduce intrafraction movement, improve clinic efficiency, and potentially offering lung SBRT treatments for underserved patients on a Halcyon only clinic.
Pokhrel D
,Webster A
,Mallory R
,Visak J
,Bernard ME
,McGarry RC
,Kudrimoti M
... -
《Journal of Applied Clinical Medical Physics》
-
Is Halcyon feasible for single thoracic or lumbar vertebral segment SBRT?
Halcyon linear accelerators employ intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) techniques. The Halcyon offers translational, but not rotational, couch correction, which only allows a 3 degrees of freedom (3-DOF) correction. In contrast, the TrueBeam (TB) linear accelerator offers full 6-DOF corrections. This study aims to evaluate the difference in treatment plan quality for single thoracic or lumbar vertebral segment SBRT between the Halcyon and TB linear accelerators. In addition, this study will also investigate the effect of patient rotational setup errors on the final plan quality.
We analyzed 20 patients with a single-level spine metastasis located between the T7 and L5 vertebrae near the spinal canal. The median planning target volume was 52.0 cm3 (17.9-138.7 cm3 ). The median tumor diameter in the axial plane was 4.6 cm (range 1.7-6.8 cm), in the sagittal plane was 3.3 cm (range 2-5 cm). The prescription doses were either 12-16 Gy in 1 fraction or 18-24 Gy in 3 fractions. All patients were treated on the TB linear accelerator with a 2.5 mm Multi-Leaf Collimator (MLC) leaf width. Treatment plans were retrospectively created for the Halcyon, which has a 5 mm effective MLC leaf width. The 20 patients had a total of 50 treatments. Analysis of the 50 cone beam computed tomography (CBCT) scans showed average rotational setup errors of 0.6°, 1.2°, and 0.8° in pitch, yaw, and roll, respectively. Rotational error in roll was not considered in this study, as the original TB plans used a coplanar volumetric modulated arc therapy (VMAT) technique, and each 1° of roll will contribute an error of 1/360. If a plan has 3 arcs, the contribution from errors in roll will be < 0.1%. To simulate different patient setup errors, for each patient, 12 CT image datasets were generated in Velocity AI with different rotational combinations at a pitch and yaw of 1°, 2°, and 3°, respectively. We recalculated both the TB and Halcyon plans on these rotated images. The dosimetric plan quality was evaluated based on the percent tumor coverage, the Conformity Index (CI), Gradient Index (GI), Homogeneity index (HI), the maximum dose to the cord/cauda, and the volume of the cord/cauda receiving 8, 10, and 12 Gy (V8Gy, V10Gy and V12Gy). Paired t-tests were performed between the original and rotated plans with a significance level of 0.05.
The Eclipse based VMAT plans on Halcyon achieved a similar target coverage (92.3 ± 3.0% vs. 92.4 ± 3.3%, p = 0.82) and CI (1.0 ± 0.1 vs. 1.1 ± 0.2, p = 0.12) compared to the TB plans. The Gradient index of Halcyon is higher (3.96 ±0.8) than TB (3.85 ±0.7), but not statistically significant. The maximum dose to the spinal cord/cauda was comparable (11.1 ± 2.8 Gy vs. 11.4 ± 3.6 Gy, p = 0.39), as were the V8Gy, V10Gy and V12Gy to the cord/cauda. The dosimetric influence of patient rotational setup error was statistically insignificant for rotations of up to 1° pitch/yaw (with similar target coverage, CI, max cord/cauda dose and V8Gy, V10Gy, V12Gy for cord/cauda). The total number of monitor units (MUs) for Halcyon (4998 ± 1688) was comparable to that of TB (5463 ± 2155) (p = 0.09).
The Halcyon VMAT plans for a single thoracic or lumbar spine metastasis were dosimetrically comparable to the TB plans. Patient rotation within 1° in the pitch and yaw directions, if corrected by translation, resulted in insignificant dosimetric effects. The Halcyon linear accelerator is an acceptable alternative to TB for the treatment of single thoracic or lumbar spinal level metastasis, but users need to be cautious about the patient rotational setup error. It is advisable to select patients appropriately, including only those with the thoracic or lumbar spine involvement and keeping at least 2 mm separation between the target and the cord/cauda. More margin is needed if the distance between the isocenter and cord/cauda is larger. It is advisable to place the planning isocenter close to the spinal canal to further mitigate the rotational error.
We simulated various scenarios of patient setup errors with different rotational combinations of pitch and yaw with 1°, 2°, and 3°, respectively. Rotation was corrected with translation only to mimic the Halcyon treatment scenario. Using the Halcyon for treating a tumor in a single thoracic or lumbar vertebral segment is feasible, but caution should be noted in patients requiring rotational corrections of > 1° in the absence of 6-DOF correction capabilities.
Li F
,Park J
,Lalonde R
,Jang SY
,diMayorca MS
,Flickinger JC
,Keller A
,Huq MS
... -
《Journal of Applied Clinical Medical Physics》
-
Stereotactic radiotherapy of intracranial tumor beds on a ring-mounted Halcyon LINAC.
This study sought to evaluate the feasibility and efficacy of the Halcyon Ring Delivery System (RDS) for delivering stereotactic radiotherapy (SRT) treatments for intracranial tumors beds.
Ten previously treated brain SRT patients for 30 Gy in five fractions with non-coplanar HyperArc plans on TrueBeam (6MV-FFF) were replanned on Halcyon (6MV-FFF) using the same number of arcs and Eclipse's AcurosXB dose engine. Plan quality evaluation metrics per SRT protocol included: PTV coverage, GTV dose (minimum and mean), target conformity indices (CI), heterogeneity index (HI), gradient index (GI), maximum dose 2 cm away from the PTV (D2cm), and doses to organs-at-risk (OAR). Additionally, patient-specific quality assurance (QA) results and beam-on-time (BOT) were analyzed.
The Halcyon RDS provided highly conformal SRT plans for intracranial tumor beds with similar dose to target. When benchmarked against clinically delivered HyperArc plans, target coverage, CI(s) and HI were statistically similar. The Halcyon plans saw no statistical difference in maximum OAR doses to the brainstem, spinal cord, and cochlea. Due to the machine's coplanar geometry, the Halcyon plans showed a decrease in optic pathway dose (0.75 Gy vs. 2.08 Gy, p = 0.029). Overall, Halcyon's coplanar geometry resulted in a larger GI (3.33 vs. 2.72, p = 0.008) and a larger D2cm (39.59% vs. 29.07%, p < 0.001). In this cohort, multiple cases had the PTV and the optic pathway in the same axial plane. In one such instance, the PTV was <2 cm away from the optic pathway but even at this close proximity OAR, Halcyon still adequately spared the optic pathway. Additionally, the Halcyon's geometry provided slightly larger amount of normal brain dose receiving 24.4 Gy (8.99 cc vs. 7.36 cc) and 28.8 Gy (2.9 cc vs. 2.5 cc), although statistically insignificant. The Halcyon plans achieved similar delivery accuracy, quantified by patient-specific QA results evaluated with a 2%/2 mm gamma criteria (99.42% vs. 99.70%). For both plans, independent Monte Carlo second checks calculation agreed within 1%. Average Halcyon BOT was slightly higher by 0.35 min (p = 0.045), however, due to the one-step patient set-up and verification overall estimated treatment times on Halcyon were lower compared to HyperArc treatments (7.61 min vs. 10.26 min, p < 0.001).
When benchmarked against clinically delivered HyperArc treatments, the Halcyon brain SRT plans provided similar plan quality and delivery accuracy but achieved faster overall treatment times. We have started treating select brain SRT patients on the Halcyon RDS for patients having tumor beds greater than 1 cm in diameter with the closest OAR distance of greater than 2 cm away from the target. We recommend other clinics to consider commissioning SRT treatments on their Halcyon systems-allowing including remote Halcyon-only clinics to provide exceptionally high-quality therapeutic brain SRT treatments to an otherwise underserved patient cohort.
Misa J
,McCarthy S
,Clair WS
,Pokhrel D
... -
《Journal of Applied Clinical Medical Physics》