Predicting the immune landscape of invasive breast carcinoma based on the novel signature of immune-related lncRNA.

来自 PUBMED

作者:

Shen SChen XHu XHuo JLuo LZhou X

展开

摘要:

The composition of the population of immune-related long non-coding ribonucleic acid (irlncRNA) generates a signature, irrespective of expression level, with potential value in predicting the survival status of patients with invasive breast carcinoma. The current study uses univariate analysis to identify differentially expressed irlncRNA (DEirlncRNA) pairs from RNA-Seq data from The Cancer Genome Atlas (TCGA). 36 pairs of DEirlncRNA pairs were identified. Using various algorithms to construct a model, we have compared the area under the curve and calculated the 5-year curve of Akaike information criterion (AIC) values, which allows determination of the threshold indicating the maximum value for differentiation. Through cut-off point to establish the optimal model for distinguishing high-risk or low-risk groups among breast cancer patients. We assigned individual patients with invasive breast cancer to either high risk or low risk groups depending on the cut-off point, re-evaluated the tumor immune cell infiltration, the effectiveness of chemotherapy, immunosuppressive biomarkers, and immunotherapy. After re-assessing patients according to the threshold, we demonstrated an effective means of distinguish the severity of the disease, and identified patients with different clinicopathological characteristics, specific tumor immune infiltration states, high sensitivity to chemotherapy,wellpredicted response to immunotherapy and thus a more favorable survival outcome. The current study presents novel findings regarding the use of irlncRNA without the need to predict precise expression levels in the prognosis of breast cancer patients and to indicate their suitability for anti-tumor immunotherapy.

收起

展开

DOI:

10.1002/cam4.4189

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(212)

参考文献(48)

引证文献(4)

来源期刊

Cancer Medicine

影响因子:4.706

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读