-
Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis.
Intestinal microbiota dysbiosis is an established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an attractive alternative UC treatment strategy, considering the potential adverse effects of synthetic drugs used to treat UC. Kaempferol (Kae) is an anti-inflammatory and antioxidant flavonoid derived from a variety of medicinal plants. In this study, we determined the efficacy and mechanism of action of Kae as an anti-UC agent in dextran sulfate sodium (DSS)-induced colitis mice. DSS challenge in a mouse model of UC led to weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by pretreatment with Kae. In addition, intestinal permeability was shown to improve using fluorescein isothiocyanate (FITC)-dextran administration. DSS-induced destruction of the intestinal barrier was also significantly prevented by Kae administration via increases in the levels of ZO-1, occludin, and claudin-1. Furthermore, Kae pretreatment decreased the levels of IL-1β, IL-6, and TNF-α and downregulated transcription of an array of inflammatory signaling molecules, while it increased IL-10 mRNA expression. Notably, Kae reshaped the intestinal microbiome by elevating the Firmicutes to Bacteroidetes ratio; increasing the linear discriminant analysis scores of beneficial bacteria, such as Prevotellaceae and Ruminococcaceae; and reducing the richness of Proteobacteria in DSS-challenged mice. There was also an evident shift in the profile of fecal metabolites in the Kae treatment group. Serum LPS levels and downstream TLR4-NF-κB signaling were downregulated by Kae supplementation. Moreover, fecal microbiota transplantation from Kae-treated mice to the DSS-induced mice confirmed the effects of Kae on modulating the gut microbiota to alleviate UC. Therefore, Kae may exert protective effects against colitis mice through regulating the gut microbiota and TLR4-related signaling pathways. This study demonstrates the anti-UC effects of Kae and its potential therapeutic mechanisms, and offers novel insights into the prevention of inflammatory diseases using natural products.
Qu Y
,Li X
,Xu F
,Zhao S
,Wu X
,Wang Y
,Xie J
... -
《Frontiers in Immunology》
-
Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), that is associated with a significantly increased risk of colon cancer. As a classic traditional Chinese medicine, Ganluyin (GLY) has a long history as an anti-inflammatory medication, but its impacts on UC has not been established.
This study aims to evaluate the protective effect and mechanism of GLY on a pathway involving enteric-origin lipopolysaccharide (LPS), toll-like receptor (TLR)4, and NF-κB in mice with dextran sulfate sodium (DSS)-induced UC.
After three weeks of intragastric administration of GLY, a UC model was induced in mice by administration of 4% DSS in drinking water for one week. The disease activity index (DAI) was measured, and histological staining was used to detect histopathological changes of colon. LPS content of the serum was measured by ELISA, and the expression of tight junction proteins and proteins related to TLR4/NF-κB pathway in colon were analyzed by immunohistochemistry or Western Blotting. The intestinal flora was analyzed by 16S rRNA sequencing.
GLY improved the histological pathological changes of DSS-induced UC, as assessed by DAI, colonic mucosal damage, inflammatory cell infiltration, and goblet cell and mucus reduction. GLY also protected the intestinal mucosal barrier by increasing the expression of the tight junction proteins, occludin, claudin-1, and ZO-1 and by reducing the serum LPS content and decreasing the expression of TLR4, MyD88, NF-κB, IL-6, IL-1β, and TNF-α proteins in colon. Analyses of the intestinal flora showed that GLY restored the homeostasis of the intestinal flora through increases in the abundance of Firmicutes and decreases in the abundance of Proteobacteria and Bacteroidetes, which is associated with the production of LPS.
GLY might exert an anti-UC effect by improving the colonic mucosal barrier and inhibiting the enteric-origin LPS/TLR4/NF-κB inflammatory pathway, and restoring the homeostasis of the intestinal flora in UC mice. These discoveries lay a strong foundation for GLY as a UC treatment.
Xiong T
,Zheng X
,Zhang K
,Wu H
,Dong Y
,Zhou F
,Cheng B
,Li L
,Xu W
,Su J
,Huang J
,Jiang Z
,Li B
,Zhang B
,Lv G
,Chen S
... -
《-》
-
Astragalin Attenuates Dextran Sulfate Sodium (DSS)-Induced Acute Experimental Colitis by Alleviating Gut Microbiota Dysbiosis and Inhibiting NF-κB Activation in Mice.
With the ulcerative colitis (UC) incidence increasing worldwide, it is of great importance to prevent and treat UC. However, efficient treatment options for UC are relatively limited. Due to the potentially serious adverse effects of existing drugs, there is an increasing demand for alternative candidate resources derived from natural and functional foods. Astragalin (AG) is a type of anti-inflammatory flavonoid, with Moringa oleifera and Cassia alata being its main sources. In this study, we investigated the therapeutic effects of AG on mice with dextran sulfate sodium (DSS)-induced colitis. Our results suggested that AG treatment reduced weight loss and the disease activity index (DAI), prevented colon shortening and alleviated colonic tissue damage. AG treatment reduced the expression of pro-inflammatory cytokines and related mRNAs (such as TNF-α, IL-6, and IL-1β), inhibited colonic infiltration by macrophages and neutrophils, ameliorated metabolic endotoxemia, and improved intestinal mucosal barrier function (increased expression levels of mRNAs such as ZO-1, occludin, and Muc2). Western blot analysis revealed that AG downregulated the NF-κB signaling pathway. Moreover, AG treatment partially reversed the alterations in the gut microbiota in colitis mice, mainly by increasing the abundance of potentially beneficial bacteria (such as Ruminococcaceae) and decreasing the abundance of potentially harmful bacteria (such as Escherichia-Shigella). Ruminococcaceae and Enterobacteriaceae (Escherichia-Shigella) were thought to be the key groups affected by AG to improve UC. Therefore, AG might exert a good anti-UC effect through microbiota/LPS/TLR4/NF-kB-related pathways in mice. The results of this study reveal the anti-inflammatory effect and mechanism of AG and provide an important reference for studying the mechanisms of natural flavonoids involved in preventing inflammation-driven diseases.
Peng L
,Gao X
,Nie L
,Xie J
,Dai T
,Shi C
,Tao L
,Wang Y
,Tian Y
,Sheng J
... -
《Frontiers in Immunology》
-
Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier.
Pinocembrin, a plant-derived flavonoid, has a variety of pharmacological activities, including anti-infection, anti-cancer, anti-inflammation, cardiovascular protection, etc. However, the mechanism of pinocembrin on the anti-colitis efficacy remains elusive and needs further investigation. Here, we reported that pinocembrin eased the severity of dextran sulfate sodium (DSS)-induced colitis in mice by suppressing the abnormal activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway in vivo. In addition, the gut microbiota was disordered in DSS colitis mice, which was associated with a significant decrease in microbiota diversity and a great shift in bacteria profiles; however, pinocembrin treatment improved the imbalance of gut microbiota and made it similar to that in normal mice. On the other hand, in vitro, pinocembrin down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, pinocembrin competitively inhibited the binding of LPS to myeloid differentiation protein 2 (MD2), thereby blocking the formation of receptor multimer TLR4/MD2·LPS. Furthermore, pinocembrin dose-dependently promoted the expression of tight junction proteins (ZO-1, Claudin-1, Occludin and JAM-A) in Caco-2 cells. In conclusion, our work presented evidence that pinocembrin attenuated DSS-induced colitis in mouse, at least in part, via regulating intestinal microbiota, inhibiting the over-activation of TLR4/MD2/NF-κB signaling pathway, and improving the barriers of intestine.
Yue B
,Ren J
,Yu Z
,Luo X
,Ren Y
,Zhang J
,Mani S
,Wang Z
,Dou W
... -
《-》
-
Mesona chinensis Benth Polysaccharides Alleviate DSS-Induced Ulcerative Colitis via Inhibiting of TLR4/MAPK/NF-κB Signaling Pathways and Modulating Intestinal Microbiota.
Ulcerative colitis (UC) is a severe disease of the intestinal tract. To investigate the role of TLR4/Mitogen-activated protein kinase (MAPK)/Nuclear factor kappa-B(NF-κB) pathways and intestinal flora in UC, and the protective mechanisms of Mesona chinensis Benth polysaccharides (MBP), potential therapeutic agents due to their diabetes-relieving, cancer-suppressing, and immunomodulatory properties.
A dextran sulfate sodium (DSS)-induced mouse colitis model is used for experiments; the histopathology, immunohistochemistry, and Western blotting's results suggest that MBP can alleviate the colitis symptoms, inhibits the overproduction of TNF-α, IL-1β, promote IL-10, reduces myeloperoxidase activity, and alleviates the inflammatory response probably by inhibiting the activation of TLR4/MAPK/NF-κB pathways. Furthermore, MBP improvs the ratio of Bcl-2/BAX, maintains the intestinal integrity by promoting the levels of zonulin occludin-1 (ZO-1), occluding and mucin mucin-2 (MUC-2), reduces the levels of endotoxin (ET), lipopolysaccharide binding protein (LBP) in serum, and oxidative stress in liver. Moreover, using 16S rRNA Gene Sequencing analysis, MBP regulates gut microbiota by decreasing the abundances of Helicobacter and Prevotella and increasing the abundances of Lactobacillus and Coprococcus, reverses microbiota dysbiosis caused by DSS.
These findings confirm the anti-inflammatory effects of MBP, restoration of the intestinal barrier and intestinal flora, and have therapeutic potential to attenuate the development of UC.
Lu H
,Shen M
,Chen T
,Yu Y
,Chen Y
,Yu Q
,Chen X
,Xie J
... -
《-》