-
Systematic Assessment of 10 Biomarker Candidates Focusing on α-Synuclein-Related Disorders.
Objective diagnostic biomarkers are needed to support a clinical diagnosis.
To analyze markers in various neurodegenerative disorders to identify diagnostic biomarker candidates for mainly α-synuclein (aSyn)-related disorders (ASRD) in serum and/or cerebrospinal fluid (CSF).
Upon initial testing of commercially available kits or published protocols for the quantification of the candidate markers, assays for the following were selected: total and phosphorylated aSyn (pS129aSyn), neurofilament light chain (NfL), phosphorylated neurofilament heavy chain (pNfH), tau protein (tau), ubiquitin C-terminal hydrolase L1 (UCHL-1), glial fibrillary acidic protein (GFAP), calcium-binding protein B (S100B), soluble triggering receptor expressed on myeloid cells 2 (sTREM-2), and chitinase-3-like protein 1 (YKL-40). The cohort comprised participants with Parkinson's disease (PD, n = 151), multiple system atrophy (MSA, n = 17), dementia with Lewy bodies (DLB, n = 45), tau protein-related neurodegenerative disorders (n = 80, comprising patients with progressive supranuclear palsy (PSP, n = 38), corticobasal syndrome (CBS, n = 16), Alzheimer's disease (AD, n = 11), and frontotemporal degeneration/amyotrophic lateral sclerosis (FTD/ALS, n = 15), as well as healthy controls (HC, n = 20). Receiver operating curves (ROC) with area under the curves (AUC) are given for each marker.
CSF total aSyn was decreased. NfL, pNfH, UCHL-1, GFAP, S100B, and sTREM-2 were increased in patients with neurodegenerative disease versus HC (P < 0.05). As expected, some of the markers were highest in AD (i.e., UCHL-1, GFAP, S100B, sTREM-2, YKL-40). Within ASRD, CSF NfL levels were higher in MSA than PD and DLB (P < 0.05). Comparing PD to HC, interesting serum markers were S100B (AUC: 0.86), sTREM2 (AUC: 0.87), and NfL (AUC: 0.78). CSF S100B and serum GFAP were highest in DLB.
Levels of most marker candidates tested in serum and CSF significantly differed between disease groups and HC. In the stratification of PD versus other tau- or aSyn-related conditions, CSF NfL levels best discriminated PD and MSA. CSF S100B and serum GFAP best discriminated PD and DLB. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Schulz I
,Kruse N
,Gera RG
,Kremer T
,Cedarbaum J
,Barbour R
,Zago W
,Schade S
,Otte B
,Bartl M
,Hutten SJ
,Trenkwalder C
,Mollenhauer B
... -
《-》
-
Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias.
Increasing evidence supports the use of plasma biomarkers of neurodegeneration and neuroinflammation to screen and diagnose patients with dementia. However, confirmatory studies are required to demonstrate their usefulness in the clinical setting.
We evaluated plasma and cerebrospinal fluid (CSF) samples from consecutive patients with frontotemporal dementia (FTD) (n = 59), progressive supranuclear palsy (PSP) (n = 31), corticobasal syndrome (CBS) (n = 29), dementia with Lewy bodies (DLB) (n = 49), Alzheimer disease (AD) (n = 97), and suspected non-AD physiopathology (n = 51), as well as plasma samples from 60 healthy controls (HC). We measured neurofilament light chain (NfL), phospho-tau181 (p-tau181), and glial fibrillary acid protein (GFAP) using Simoa (all plasma biomarkers and CSF GFAP), CLEIA (CSF p-tau181), and ELISA (CSF NfL) assays. Additionally, we stratified patients according to the A/T/N classification scheme and the CSF α-synuclein real-time quaking-induced conversion assay (RT-QuIC) results.
We found good correlations between CSF and plasma biomarkers for NfL (rho = 0.668, p < 0.001) and p-tau181 (rho = 0.619, p < 0.001). Plasma NfL was significantly higher in disease groups than in HC and showed a greater increase in FTD than in AD [44.9 (28.1-68.6) vs. 21.9 (17.0-27.9) pg/ml, p < 0.001]. Conversely, plasma p-tau181 and GFAP levels were significantly higher in AD than in FTD [3.2 (2.4-4.3) vs. 1.1 (0.7-1.6) pg/ml, p < 0.001; 404.7 (279.7-503.0) vs. 198.2 (143.9-316.8) pg/ml, p < 0.001]. GFAP also allowed discriminating disease groups from HC. In the distinction between FTD and AD, plasma p-tau181 showed better accuracy (AUC 0.964) than NfL (AUC 0.791) and GFAP (AUC 0.818). In DLB and CBS, CSF amyloid positive (A+) subjects had higher plasma p-tau181 and GFAP levels than A- individuals. CSF RT-QuIC showed positive α-synuclein seeding activity in 96% DLB and 15% AD patients with no differences in plasma biomarker levels in those stratified by RT-QuIC result.
In a single-center clinical cohort, we confirm the high diagnostic value of plasma p-tau181 for distinguishing FTD from AD and plasma NfL for discriminating degenerative dementias from HC. Plasma GFAP alone differentiates AD from FTD and neurodegenerative dementias from HC but with lower accuracy than p-tau181 and NfL. In CBS and DLB, plasma p-tau181 and GFAP levels are significantly influenced by beta-amyloid pathology.
Baiardi S
,Quadalti C
,Mammana A
,Dellavalle S
,Zenesini C
,Sambati L
,Pantieri R
,Polischi B
,Romano L
,Suffritti M
,Bentivenga GM
,Randi V
,Stanzani-Maserati M
,Capellari S
,Parchi P
... -
《Alzheimers Research & Therapy》
-
α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study.
Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are brain disorders characterised by intracellular α-synuclein deposits. We aimed to assess whether reduction of α-synuclein concentrations in CSF was a marker for α-synuclein deposition in the brain, and therefore diagnostic of synucleinopathies.
We assessed potential extracellular-fluid markers of α-synuclein deposition in the brain (total α-synuclein and total tau in CSF, and total α-synuclein in serum) in three cohorts: a cross-sectional training cohort of people with Parkinson's disease, multiple system atrophy, dementia with Lewy bodies, Alzheimer's disease, or other neurological disorders; a group of patients with autopsy-confirmed dementia with Lewy bodies, Alzheimer's disease, or other neurological disorders (CSF specimens were drawn ante mortem during clinical investigations); and a validation cohort of patients who between January, 2003, and December, 2006, were referred to a specialised movement disorder hospital for routine inpatient admission under the working diagnosis of parkinsonism. CSF and serum samples were assessed by ELISA, and clinical diagnoses were made according to internationally established criteria. Mean differences in biomarkers between diagnostic groups were assessed with conventional parametric and non-parametric statistics.
In our training set, people with Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies had lower CSF α-synuclein concentrations than patients with Alzheimer's disease and other neurological disorders. CSF α-synuclein and tau values separated participants with synucleinopathies well from those with other disorders (p<0·0001; area under the receiver operating characteristic curve [AUC]=0·908). In the autopsy-confirmed cases, CSF α-synuclein discriminated between dementia with Lewy bodies and Alzheimer's disease (p=0·0190; AUC=0·687); in the validation cohort, CSF α-synuclein discriminated Parkinson's disease and dementia with Lewy bodies versus progressive supranuclear palsy, normal-pressure hydrocephalus, and other neurological disorders (p<0·0001; AUC=0·711). Other predictor variables tested in this cohort included CSF tau (p=0·0798), serum α-synuclein (p=0·0502), and age (p=0·0335). CSF α-synuclein concentrations of 1·6 pg/μL or lower showed 70·72% sensitivity (95% CI 65·3-76·1%) and 52·83% specificity (39·4-66·3%) for the diagnosis of Parkinson's disease. At this cutoff, the positive predictive value for any synucleinopathy was 90·7% (95% CI 87·3-94·2%) and the negative predictive value was 20·4% (13·7-27·2%).
Mean CSF α-synuclein concentrations as measured by ELISA are significantly lower in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy than in other neurological diseases. Although specificity was low, the high positive predictive value of CSF α-synuclein concentrations in patients presenting with synucleinopathy-type parkinsonism might be useful in stratification of patients in future clinical trials.
American Parkinson Disease Association, Stifterverband für die Deutsche Wissenschaft, Michael J Fox Foundation for Parkinson's Research, National Institutes of Health, Parkinson Research Consortium Ottawa, and the Government of Canada.
Mollenhauer B
,Locascio JJ
,Schulz-Schaeffer W
,Sixel-Döring F
,Trenkwalder C
,Schlossmacher MG
... -
《-》
-
A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias.
Bolsewig K
,Hok-A-Hin YS
,Sepe FN
,Boonkamp L
,Jacobs D
,Bellomo G
,Paoletti FP
,Vanmechelen E
,Teunissen CE
,Parnetti L
,Willemse EAJ
... -
《-》
-
A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes.
Patients presenting with parkinsonian syndromes share many clinical features, which can make diagnosis difficult. This is important as atypical parkinsonian syndromes (APSs) such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and corticobasal syndrome (CBS) carry a poor prognosis, compared with patients with Parkinson's disease (PD). In addition, there is overlap between APS and dementia diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD).
To use a panel of cerebrospinal fluid (CSF) biomarkers to differentiate patients with APS from PD and dementia.
A prospective cohort of 160 patients and 30 control participants were recruited from a single specialist centre. Patients were clinically diagnosed according to current consensus criteria. CSF samples were obtained from patients with clinical diagnoses of PD (n=31), PSP (n=33), CBS (n=14), MSA (n=31), AD (n=26) and FTD (n=16). Healthy, elderly participants (n=30) were included as controls. Total τ (t-τ), phosphorylated τ (p-τ), β-amyloid 1-42 (Aβ42), neurofilament light chain (NFL), α-synuclein (α-syn), amyloid precursor protein soluble metabolites α and β (soluble amyloid precursor protein (sAPP)α, sAPPβ) and two neuroinflammatory markers (monocyte chemoattractant protein-1 and YKL-40) were measured in CSF. A reverse stepwise regression analysis and the false discovery rate procedure were used.
CSF NFL (p<0.001), sAPPα (p<0.001) and a-syn (p=0.003) independently predicted diagnosis of PD versus APS. Together, these nine biomarkers could differentiate patients with PD from APS with an area under the curve of 0.95 and subtypes of APS from one another. There was good discriminatory power between parkinsonian groups, dementia disorders and healthy controls.
A panel of nine CSF biomarkers was able to differentiate APS from patients with PD and dementia. This may have important clinical utility in improving diagnostic accuracy, allowing better prognostication and earlier access to potential disease-modifying therapies.
Magdalinou NK
,Paterson RW
,Schott JM
,Fox NC
,Mummery C
,Blennow K
,Bhatia K
,Morris HR
,Giunti P
,Warner TT
,de Silva R
,Lees AJ
,Zetterberg H
... -
《-》