A retrospective analysis of eleven gene mutations, PD-L1 expression and clinicopathological characteristics in non-small cell lung cancer patients.

来自 PUBMED

作者:

Liu YWu ALi XWang SFang SMo Y

展开

摘要:

To investigate the associations among expression of programmed cell death ligand 1 (PD-L1), eleven mutated genes, and clinicopathological characteristics in 273 patients with non-small cell lung cancer (NSCLC). We retrospectively examined tumor PD-L1 expression in 247 surgically resected primary and 26 advanced NSCLC patients by immunohistochemistry using SP263 antibody assay. Gene mutations of EGFR, TP53, KRAS, PIK3CA, ERBB2, MET, RET, ALK, BRAF, ROS1, and APC were examined by NGS sequence. Data analysis was carried out using SPSS 22.0. The associations among PD-L1 expression, eleven mutated genes and clinicopathological characteristics were assessed by univariate and multivariate analysis. Among the total 273 patients, 68 (24.9%) patients were positive for PD-L1 expression. Data showed that mutated rate of EGFR gene was the highest with 63.0% (172/273), followed by TP53 (11.7%, 32/273) and KRAS (5.5%, 15/273). The female, non-smoker, and patients with adenocarcinoma (ADC) were more likely to have EGFR mutations. Multivariate logistic regression showed that PD-L1 expression was significantly associated with Non-ADC, lymphatic invasion, EGFR wild type and TP53 mutation (p = 0.041, <0.001, 0.004 and 0.014, respectively). Moreover, PD-L1 expression in adenocarcinoma was associated with lymphatic invasion, mutation of TP53 and KRAS gene (p = 0.012, <0.025 and 0.041, respectively). Mutations of EGFR, KRAS and TP53 should be routinely detected in clinical practice to better guide the immunotherapy for NSCLC patients. Future investigations are warranted to illustrate the potential mechanisms between driver mutations and PD-L1 expression for guiding immunotherapy in patients with NSCLC.

收起

展开

DOI:

10.1016/j.asjsur.2021.06.030

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(233)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读