Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

来自 PUBMED

作者:

Marini NOtálora SMüller HAtzori M

展开

摘要:

Convolutional neural networks (CNNs) are state-of-the-art computer vision techniques for various tasks, particularly for image classification. However, there are domains where the training of classification models that generalize on several datasets is still an open challenge because of the highly heterogeneous data and the lack of large datasets with local annotations of the regions of interest, such as histopathology image analysis. Histopathology concerns the microscopic analysis of tissue specimens processed in glass slides to identify diseases such as cancer. Digital pathology concerns the acquisition, management and automatic analysis of digitized histopathology images that are large, having in the order of 100'0002 pixels per image. Digital histopathology images are highly heterogeneous due to the variability of the image acquisition procedures. Creating locally labeled regions (required for the training) is time-consuming and often expensive in the medical field, as physicians usually have to annotate the data. Despite the advances in deep learning, leveraging strongly and weakly annotated datasets to train classification models is still an unsolved problem, mainly when data are very heterogeneous. Large amounts of data are needed to create models that generalize well. This paper presents a novel approach to train CNNs that generalize to heterogeneous datasets originating from various sources and without local annotations. The data analysis pipeline targets Gleason grading on prostate images and includes two models in sequence, following a teacher/student training paradigm. The teacher model (a high-capacity neural network) automatically annotates a set of pseudo-labeled patches used to train the student model (a smaller network). The two models are trained with two different teacher/student approaches: semi-supervised learning and semi-weekly supervised learning. For each of the two approaches, three student training variants are presented. The baseline is provided by training the student model only with the strongly annotated data. Classification performance is evaluated on the student model at the patch level (using the local annotations of the Tissue Micro-Arrays Zurich dataset) and at the global level (using the TCGA-PRAD, The Cancer Genome Atlas-PRostate ADenocarcinoma, whole slide image Gleason score). The teacher/student paradigm allows the models to better generalize on both datasets, despite the inter-dataset heterogeneity and the small number of local annotations used. The classification performance is improved both at the patch-level (up to κ=0.6127±0.0133 from κ=0.5667±0.0285), at the TMA core-level (Gleason score) (up to κ=0.7645±0.0231 from κ=0.7186±0.0306) and at the WSI-level (Gleason score) (up to κ=0.4529±0.0512 from κ=0.2293±0.1350). The results show that with the teacher/student paradigm, it is possible to train models that generalize on datasets from entirely different sources, despite the inter-dataset heterogeneity and the lack of large datasets with local annotations.

收起

展开

DOI:

10.1016/j.media.2021.102165

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2766)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读