Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats.

来自 PUBMED

作者:

Zhang ABai ZYi WHu ZHao J

展开

摘要:

Growing evidence has shown that microRNAs (miRNAs) play crucial roles in the physiopathology of spinal cord injury (SCI). Recent studies have confirmed that miR-338-5p regulates myelination, suggesting a potential role in the treatment of SCI. However, the molecular mechanism of miR-338-5p on SCI is still unknown. Recently, exosomes have emerged as an ideal vector to deliver therapeutic molecules such as miRNAs. Here, we explored the effects of miR-338-5p-overexpressing exosomes derived from bone marrow-derived mesenchymal stromal cells (BMSCs) on SCI. In vivo, a model of contusion SCI in rats was established, and we observed that overexpression of miR-338-5p in exosomes profoundly increased the expression levels of neurofilament protein-M and growth-associated protein-43 and decreased those of myelin-associated glycoprotein and glial fibrillary acidic protein, which provided neuroprotective effects after acute SCI. In an in vitro study, we found that overexpression of miR-338-5p in exosomes repressed cell apoptosis following H2O2-induced oxidative stress injury in PC12 cells. Additionally, we confirmed that cannabinoid receptor 1 (Cnr1) was the target gene of miR-338-5p by dual-luciferase reporter assays and that Rap1 was the downstream gene by the KEGG pathway analysis. We found that miR-338-5p increased cAMP accumulation as a consequence of downregulated expression of the target gene Cnr1, and then, Rap1 was activated by cAMP. Eventually, the activation of the PI3K/Akt pathway attenuated cell apoptosis and promoted neuronal survival by cAMP-mediated Rap1 activation. In brief, these findings showed that exosomes overexpressing miR-338-5p were a promising treatment strategy for SCI.

收起

展开

DOI:

10.1016/j.neulet.2021.136124

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(433)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读