-
The Combination Treatment of Curcumin and Probucol Protects Chondrocytes from TNF-α Induced Inflammation by Enhancing Autophagy and Reducing Apoptosis via the PI3K-Akt-mTOR Pathway.
Osteoarthritis (OA) is a chronic joint disease characterized by cholesterol accumulation in chondrocytes, cartilage degeneration, as well as extracellular matrix (ECM) destruction, and joint dysfunction. Curcumin, a chemical that can reduce cholesterol levels in OA patients, also can inhibit the progression of OA. However, a high concentration of curcumin may also trigger apoptosis in normal chondrocytes. Besides curcumin, probucol that is found can also effectively decrease the cholesterol level in OA patients. Considering that high cholesterol is a risk factor of OA, it is speculated that the combination treatment of curcumin and probucol may be effective in the prevention of OA. To investigate the possible effects of such two chemicals on OA pathophysiology, chondrocyte apoptosis and autophagy behavior under inflammatory cytokine stress were studied, and specifically, the PI3K-Akt-mTOR signaling pathway was studied. Methods. Cell proliferation, colony formation, and EdU assay were performed to identify the cytotoxicity of curcumin and probucol on chondrocytes. Transwell assay was conducted to evaluate chondrocyte migration under TNF-α inflammation stress. Immunofluorescence, JC-1, flow cytometry, RT-PCR, and western blot were used to investigate the signal variations related to autophagy and apoptosis in chondrocytes and cartilage. A histological study was carried out on OA cartilage. Glycosaminoglycan (GAG) release was determined to evaluate the ECM degradation under stress. Results. Compared with a single intervention with curcumin or probucol, a combined treatment of these two chemicals is more effective in terms of protecting chondrocytes from stress injury induced by inflammatory cytokines. The promoted protection may be attributed to the inhibition of apoptosis and the blockage of the autophagy-related PI3K/Akt/mTOR pathway. Such results were also verified in vitro by immunofluorescence staining of OA chondrocytes and in vivo by immunohistochemistry staining of cartilage. Besides, in vivo studies also showed that when applied in combination, curcumin and probucol could block the PI3K-AKT-mTOR signaling pathway; promote COL-II expression; suppress P62, MMP-3, and MMP-13 expression; and inhibit TNF-α-stimulated cartilage degradation. Moreover, the combined medication could help reduce the release of ECM GAGs in OA cartilage and alleviate the severity of OA. Conclusion. A combined treatment of curcumin and probucol could be used to protect chondrocytes from inflammatory cytokine stress via inhibition of the autophagy-related PI3K/Akt/mTOR pathway both in vitro and in vivo, which might be of potential pharmaceutical value for OA prevention and therapy.
Han G
,Zhang Y
,Li H
《-》
-
Oroxin B alleviates osteoarthritis through anti-inflammation and inhibition of PI3K/AKT/mTOR signaling pathway and enhancement of autophagy.
Osteoarthritis (OA) is a common aging-related degenerative joint disease with chronic inflammation as its possible pathogenesis. Oroxin B (OB), a flavonoid isolated from traditional Chinese herbal medicine, possesses anti-inflammation properties which may be involved in regulating the pathogenesis of OA, but its mechanism has not been elucidated. Our study was the first to explore the potential chondroprotective effect and elucidate the underlying mechanism of OB in OA.
In vitro, primary mice chondrocytes were stimulated with IL-1β along with or without the administration of OB or autophagy inhibitor 3-methyladenine (3-MA). Cell viability assay was measured with a cell counting kit-8 (CCK-8). The phenotypes of anabolic-related (Aggrecan and Collagen II), catabolic-related (MMP3, MMP13, and ADAMTS5), inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1β), and markers of related signaling pathways in chondrocytes with different treatment were detected through western blot, RT-qPCR, and immunofluorescent staining. In vivo, the destabilized medial meniscus (DMM) operation was performed to establish the OA mice model. After knee intra-articular injection with OB for 8 weeks, the mice's knee joints were obtained for subsequent histological staining and analysis.
OB reversed the expression level of anabolic-related proteins (Aggrecan and Collagen II) and catabolic-related (MMP3, MMP13, and ADAMTS5) in IL-1β-induced chondrocytes. Mechanistically, OB suppressed the inflammatory response stimulated by IL-1β, as the inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1β) markers were downregulated after the administration of OB in IL-1β-induced chondrocytes. Besides, the activation of PI3K/AKT/mTOR signaling pathway induced by IL-1β could be inhibited by OB. Additionally, the autophagy process impaired by IL-1β could be rescued by OB. What's more, the introduction of 3-MA to specifically inhibit the autophagic process impairs the protective effect of OB on cartilage. In vivo, histological staining revealed that intra-articular injection of OB attenuated the cartilage degradation, as well as reversed the expression level of anabolic and catabolic-related proteins such as Aggrecan, Collagen II, and MMP13 induced in DMM-induced OA models.
The study verified that OB exhibited the chondroprotective effect by anti-inflammatory, inhibiting the PI3K/AKT/mTOR signaling pathway, and enhancing the autophagy process, indicating that OB might be a promising agent for the treatment of OA.
Lu R
,He Z
,Zhang W
,Wang Y
,Cheng P
,Lv Z
,Yuan X
,Guo F
,You H
,Chen AM
,Hu W
... -
《Frontiers in Endocrinology》
-
PG545 Prevents Osteoarthritis Development by Regulating PI3K/AKT/mTOR Signaling and Activating Chondrocyte Autophagy.
Osteoarthritis (OA) is a degenerative disease common in the elderly and is characterized by joint pain, swelling, and restricted movement. In recent years, heparanase has been reported to play an important role in the development of osteoarthritic cartilage. PG545 is a heparan sulfate mimetic with heparanase inhibitory activity. In this study, the therapeutic effects and possible mechanisms of PG545 were investigated in a chondrocyte injury model induced by interleukin-1β (IL -1β).
Following treatment with PG545 or the autophagy inhibitor 3-methyladenine (3-MA), chondrocyte viability was detected using Cell Counting Kit-8 and fluorescein diacetate/propidium iodide double staining. The apoptosis rate of chondrocytes was determined by flow cytometry. Expression of light chain 3 and P62 was monitored by immunofluorescence labeling. Western blot, lentivirus infection with red fluorescent protein and green fluorescent protein, and quantitative real-time polymerase chain reaction were used to determine the expression levels of chondrocyte markers, apoptosis-related factors, autophagy proteins, and key proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. The expression and activity of stress-specific enzymes such as malondialdehyde, superoxide dismutase, and catalase (CAT) were investigated. Chondrocytes with ATG5 knockdown were used to investigate the relationship between the therapeutic effect of PG545 and autophagy. The therapeutic effect of PG545 was verified in vivo.
PG545 had a significant protective effect on chondrocytes by reducing oxidative stress, apoptosis, and degradation of chondrocytes and increasing chondrocyte proliferation. PG545 was effective in inducing autophagy in IL-1β-treated cells, while 3-MA attenuated the effect. The PI3K/Akt/mTOR pathway may be involved in the promotion of autophagy and OA treatment by PG545.
PG545 was able to restore impaired autophagy and autophagic flux via the PI3K/Akt/mTOR pathway, thereby delaying the progression of OA, suggesting that PG545 may be a novel therapeutic approach for OA.
Guo P
,Li H
,Wang X
,Li X
,Li X
... -
《-》
-
Daurisoline attenuates H(2)O(2)-induced chondrocyte autophagy by activating the PI3K/Akt/mTOR signaling pathway.
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degeneration and intra-articular inflammation. Daurisoline (DAS) is an isoquinoline alkaloid isolated from Rhizoma Menispermi, whose antitumor and anti-inflammatory pharmacological effects have been demonstrated, but the effects of DAS on OA have rarely been researched. In this study, we aimed to explore the potential role of DAS in OA and its partial mechanism.
The cytotoxicity of H2O2 and DAS toward chondrocytes was detected by the Cell Counting Kit-8 assay. Safranin O staining was used to detect chondrocyte phenotype changes. Cell apoptosis was measured by both flow cytometry and quantitative analysis of the protein levels of the apoptosis-related factors Bax, Bcl-2 and cleaved caspase-3 by western blot. Western blotting and immunofluorescence were used to assess the expression of the autophagy-related proteins LC3, Beclin-1 and p62. In addition, key signal pathway targets and matrix-degrading indicators were measured by western blot.
Our results indicated that H2O2 induced human chondrocyte apoptosis and activated autophagy in a dose-dependent manner. DAS treatment dose-dependently reversed the expression of apoptosis-related proteins (Bax, Bcl-2 and cleaved caspase3) and the apoptosis rate induced by H2O2. Western blot and immunofluorescence analyses showed that DAS decreased the H2O2-induced upregulation of the autophagy marker Beclin-1 and the LC3 II/LC3 I ratio and upregulated the p62 protein level. Mechanistically, DAS inhibited autophagy through the activation of the classical PI3K/AKT/mTOR signaling pathway and protected chondrocytes from apoptosis. In addition, DAS alleviated the H2O2-induced degradation of type II collagen and the high expression of matrix metalloproteinase 3 (MMP3) and MMP13.
Our research demonstrated that DAS alleviated chondrocyte autophagy caused by H2O2 through activation of the PI3K/AKT/mTOR signaling pathway and protected chondrocytes from apoptosis and matrix degradation. In conclusion, these findings suggest that DAS may serve as a promising therapeutic strategy for OA.
Zhang Y
,Liu W
,Liu Z
,Liu Y
... -
《-》
-
Silencing UHRF1 enhances cell autophagy to prevent articular chondrocytes from apoptosis in osteoarthritis through PI3K/AKT/mTOR signaling pathway.
Osteoarthritis (OA) is a common chronic degenerative joint disease, and chondrocyte apoptosis is one of most important pathological changes of OA pathogenesis. Growing studies have shown that Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an important epigenetic regulatory factor that regulates cell proliferation and apoptosis of various tumors, but its role in OA remains ill-defined. In the present study, we found that UHRF1 expression was increased in human OA cartilage tissues, compared with normal cartilage tissues. Interleukin-1β (IL-1β), a major inflammatory cytokine that promotes cartilage degradation in OA, was used to stimulate primary human chondrocytes in vitro. The expression of UHRF1 was also enhanced in IL-1β-induced chondrocytes. Moreover, down-regulation of UHRF1 induced an increase on cell proliferation and autophagy, and a decrease on apoptosis of chondrocytes after IL-1β treatment. Further data indicated that silencing UHRF1 attenuated the up-regulation of IL-1β on phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes. Then, an activator of PI3K weakened the effect of UHRF1 silencing on cell proliferation, autophagy, apoptosis of IL-1β-induced chondrocytes, and the cell autophagy special inhibitor 3-methyladenine (3-MA) also showed a same impact on UHRF1, hence suggesting that knockdown of UHRF1 enhances cell autophagy to protect chondrocytes from apoptosis in OA through PI3K/AKT/mTOR signaling pathway. In conclusion, our study suggests that UHRF1 may be a potential regulator of chondrocyte apoptosis in the pathogenesis of OA.
Shi X
,Han L
,Sun T
,Zhang F
,Ji S
,Zhang M
,Wang X
,Yang W
... -
《-》