Isovitexin Suppresses Stemness of Lung Cancer Stem-Like Cells through Blockage of MnSOD/CaMKII/AMPK Signaling and Glycolysis Inhibition.

来自 PUBMED

作者:

Liu FYuan QCao XZhang JCao JZhang JXia L

展开

摘要:

Manganese superoxide dismutase (MnSOD) has been reported to promote stemness of lung cancer stem-like cells (LCSLCs) which had higher glycolytic rates compared with non-CSLCs. Isovitexin exhibited an inhibitory effect on the stemness of hepatocellular carcinoma cells. However, whether isovitexin could inhibit the promotion of stemness of LCSLCs mediated by MnSOD through glycolysis remains unclear. Our study was aimed at investigating whether isovitexin inhibits lung cancer stem-like cells (LCSLCs) through MnSOD signaling blockage and glycolysis suppression. Sphere formation and soft agar assays were conducted to determine self-renewal ability. The migration and invasion of LCSLCs were determined by wound healing and transwell assay. The glycolytic activity was assessed by determination of L-lactate metabolism rate. The influences of isovitexin on MnSOD, CaMKII, and AMPK activations as well as the metabolic shift to glycolysis were determined by manipulating MnSOD expression. It was found that MnSOD and glycolysis enhanced simultaneously in LCSLCs compared with parental H460 cells. Overexpression of MnSOD activated CaMKII/AMPK signaling and glycolysis in LCSLCs with increased self-renewal, migration, invasion, and expression of stemness-associated markers in vitro and elevated carcinogenicity in vivo. Knockdown of MnSOD induced an inverse effect in LCSLCs. Isovitexin blocked MnSOD/CaMKII/AMPK signaling axis and suppressed glycolysis in LCSLCs, resulting in inhibition of stemness features in LCSLCs. The knockdown of MnSOD significantly augmented isovitexin-associated inhibition of CaMKII/AMPK signaling, glycolysis, and stemness in LCSLCs. However, the overexpression of MnSOD could attenuate the inhibition of isovitexin on LCSLCs. Importantly, isovitexin notably suppressed tumor growth in nude mice bearing LCSLCs by downregulation of MnSOD expression. MnSOD promotion of stemness of LCSLCs derived from H460 cell line is involved in the activation of the CaMKII/AMPK pathway and induction of glycolysis. Isovitexin-associated inhibition of stemness in LCSLCs is partly dependent on blockage of the MnSOD/CaMKII/AMPK signaling axis and glycolysis suppression.

收起

展开

DOI:

10.1155/2021/9972057

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(105)

参考文献(36)

引证文献(5)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读