-
Use of Inner Branches During Physician-Modified Endografting for Complex Abdominal and Thoracoabdominal Aortic Aneurysms.
Endovascular repair of complex abdominal and thoracoabdominal aortic aneurysms have been performed widely in an increasing number of centers, utilizing custom-manufactured or physician-modified stent grafts containing fenestrations and side-arm branches for visceral and renal artery incorporation. Alternatively, inner branch configurations may be useful in complex anatomy, where application of fenestrations or side-arm branches can be challenging. Our study aims to evaluate the incidence of target vessel instability when incorporated with inner branch configurations, and report clinical outcomes of patients who underwent fenestrated/branched endovascular aortic repairs (F-BEVAR) containing one or more inner branches.
We reviewed patients who underwent F-BEVAR with at least one inner branch configuration for complex abdominal or thoracoabdominal aortic aneurysms at Keck Hospital of University of Southern California from 2014 to 2020. Endpoints were mortality, major adverse events (MAE), technical success, and target vessel instability. Target vessel instability was assessed using follow-up computed tomography (CT) and duplex imaging.
Out of the 175 patients who underwent F-BEVAR for complex abdominal and TAAA during the study period, 17 patients had at least one inner branch configuration. All were deemed high-risk for open repair with multiple cardiovascular and/or pulmonary comorbidities. Eight (47%) patients had extent I, II, III thoracoabdominal aortic aneurysms, and 10 (59%) had prior aortic repairs. A total of 68 target vessels were incorporated (mean = 4 vessels/patient, range=1~6), of which 40% were inner branch configurations, most commonly for renal arteries. Technical success was 94.1%. There was one perioperative mortality due to massive myocardial infarction, as well as one patient who needed temporary hemodialysis. No device-related mortalities were observed. At 30 days, primary inner branch patency was 100% with no target vessel instability or reintervention. At mean follow-up of 5.8 months, the overall survival was 94% with one patient who expired from unknown cause. Overall primary inner branch patency was 96.3%, due to occlusion of a long lumbar artery branch with no clinical sequelae.
Inner branch configurations can provide a safe alternative technique of branch incorporation during complex endovascular aortic repair.
Pyun AJ
,Zhang LL
,Magee GA
,Ziegler KR
,Rowe VL
,Weaver FA
,Caldera R
,Han SM
... -
《-》
-
Prospective, nonrandomized study to evaluate endovascular repair of pararenal and thoracoabdominal aortic aneurysms using fenestrated-branched endografts based on supraceliac sealing zones.
To investigate outcomes of manufactured fenestrated and branched endovascular aortic repair (F-BEVAR) endografts based on supraceliac sealing zones to treat pararenal aortic aneurysms and thoracoabdominal aortic aneurysms (TAAAs).
A total of 127 patients (91 male; mean age, 75 ± 10 years old) were enrolled in a prospective, nonrandomized single-center study using manufactured F-BEVAR (November 2013-March 2015). Stent design was based on supraceliac sealing zone in all patients with ≥ four vessels in 111 (89%). Follow-up included clinical examination, laboratory studies, duplex ultrasound, and computed tomography imaging at discharge, 1 month, 6 months, and yearly. End points adjudicated by independent clinical event committee included mortality, major adverse events (any mortality, myocardial infarction, stroke, paraplegia, acute kidney injury, respiratory failure, bowel ischemia, blood loss >1 L), freedom from reintervention, and branch-related instability (occlusion, stenosis, endoleak or disconnection requiring reintervention), target vessel patency, sac aneurysm enlargement, and aneurysm rupture.
There were 47 pararenal, 42 type IV, and 38 type I-III TAAAs with mean diameter of 59 ± 17 mm. A total of 496 renal-mesenteric arteries were incorporated by 352 fenestrations, 125 directional branches, and 19 celiac scallops, with a mean of 3.9 ± 0.5 vessels per patient. Technical success of target vessel incorporation was 99.6% (n = 493/496). There were no 30-day or in-hospital deaths, dialysis, ruptures or conversions to open surgical repair. Major adverse events occurred in 27 patients (21%). Paraplegia occurred in two patients (one type IV, one type II TAAAs). Follow-up was >30 days in all patients, >6 months in 79, and >12 months in 34. No patients were lost to follow-up. After a mean follow-up of 9.2 ± 7 months, 23 patients (18%) had reinterventions (15 aortic, 8 nonaortic), 4 renal artery stents were occluded, five patients had type Ia or III endoleaks, and none had aneurysm sac enlargement. Primary and secondary target vessel patency was 96% ± 1% and 98% ± 0.7% at 1 year. Freedom from any branch instability and any reintervention was 93% ± 2% and 93% ± 2% at 1 year, respectively. Patient survival was 96% ± 2% at 1 year for the entire cohort.
Endovascular repair of pararenal aortic aneurysms and TAAAs, using manufactured F-BEVAR with supraceliac sealing zones, is safe and efficacious. Long-term follow-up is needed to assess the impact of four-vessel designs on device-related complications and progression of aortic disease.
Oderich GS
,Ribeiro M
,Hofer J
,Wigham J
,Cha S
,Chini J
,Macedo TA
,Gloviczki P
... -
《-》
-
Two-year evaluation of fenestrated and parallel branch endografts for the treatment of juxtarenal, suprarenal, and thoracoabdominal aneurysms at a single institution.
Despite numerous recent pivotal and small-scale trials, real-world endovascular management of juxtarenal aneurysms (JRA), suprarenal aneurysms (SRA), and thoracoabdominal aortic aneurysms (TAAA) remains challenging without consensus best practices. This study evaluated the mortality, graft patency, renal function, complication, and reintervention rates for fenestrated and parallel endografts in complex aortic aneurysms repairs.
This retrospective review of consecutive included patients with JRA, SRA, or TAAA who underwent complex endovascular repair from August 2014 to March 2017 at one high-volume institution. Treatment modality was a single surgeon decision based on patients anatomy and the urgency of the repair. Patient demographics, hospital course, and follow-up visits inclusive of imaging were analyzed. Ruptured aneurysms were excluded. Survival rates and outcomes were determined using the Kaplan-Meier method with log-rank tests.
Seventy complex endovascular aortic repairs were performed; 38 patients with TAAA were treated with snorkel/sandwich parallel endografts (21 celiac, 28 superior mesenteric arteries, 58 renal arteries) and 32 patients with JRA/SRA were treated by fenestrated endovascular aneurysm repair (FEVAR) with 94 total fenestrations (2 celiac, 30 SMA, 62 renal). The mean patient age was 74.8 ± 10.0 years. Sixty percent were male, and the mean aortic aneurysm diameter was 6.0 ± 1.4 cm. Perioperative mortality was 3.1% (1/32) for FEVAR compared with 2.6% (1/38) for parallel endografts (P = .9). All-cause reintervention rates were 15.6% in FEVAR (5/32) vs 23.6% with parallel endografts (9/38; P = .4). Branch reintervention rates per each branch endograft were 4.3% for FEVAR (4/94; 2 renal stent occlusions, 1 colonic ischemia without technical issue found on reintervention, 1 perinephric hematoma) vs 3.7% for parallel endografts (4/107; 2 renal and 1 celiac stent thromboses, and 1 renal stent kink; P = .41). The endograft branch thrombosis rate was 2.1% in FEVAR (2/94) vs 2.7% in parallel endografts (3/109; P = .77). Reinterventions owing to endoleaks were performed in five patients (2 type I, 2 type III, and 1 gutter endoleak; 13.1%) with parallel grafts vs no endoleak reinterventions in FEVAR. The overall survival and freedom from aneurysm-related mortality at 24 months was 78% and 96.9% in FEVAR vs 73% and 93.4% for parallel endografts (P = .8 and P = .6). The median follow-up was 12 months (range, 1-32 months).
Parallel and fenestrated endografts have acceptable and comparable mortality and patency rates in endovascular treatment of JRA, SRA, and TAAA. This study reaffirms that parallel endografts are a safe and viable alternative to fenestrated devices for complex aortic aneurysmal disease despite often treating more urgent patients and more complicated anatomy unable to be treated with FEVAR.
Bannazadeh M
,Beckerman WE
,Korayem AH
,McKinsey JF
... -
《-》
-
Effect of thoracoabdominal aortic aneurysm extent on outcomes in patients undergoing fenestrated/branched endovascular aneurysm repair.
The outcomes after open repair of thoracoabdominal aneurysms (TAAAs) have been definitively demonstrated to worsen as the TAAA extent increases. However, the effect of TAAA extent on fenestrated/branched endovascular aneurysm repair (F/BEVAR) outcomes is unclear. We investigated the differences in outcomes of F/BEVAR according to the TAAA extent.
We reviewed a single-institution, prospectively maintained database of all F/BEVAR procedures performed in an institutional review board-approved registry and/or physician-sponsored Food and Drug Administration investigational device exemption trial (trial no. G130210). The patients were stratified into two groups: group 1, extensive (extent 1-3) TAAAs; and group 2, nonextensive (juxtarenal, pararenal, and extent 4-5) TAAAs. The perioperative outcomes were compared using the χ2 test. Kaplan-Meier analysis of 3-year survival, target artery patency, reintervention, type I or III endoleak, and branch instability (type Ic or III endoleak, loss of branch patency, target vessel stenosis >50%) was performed. Cox proportional hazards modeling was used to assess the independent effect of extensive TAAA on 1-year mortality.
During the study period, 299 F/BEVAR procedures were performed for 87 extensive TAAAs (29%) and 212 nonextensive TAAAs (71%). Most repairs had used company-manufactured, custom-made devices (n = 241; 81%). Between the two groups, no perioperative differences were observed in myocardial infarction, stroke, acute kidney injury, dialysis, target artery occlusion, access site complication, or type I or III endoleak (P > .05 for all). The incidence of perioperative paraparesis was greater in the extensive TAAA group (8.1% vs 0.5%; P = .001). However, the incidence of long-term paralysis was equivalent (2.3% vs 0.5%; P = .20), with nearly all patients with paraparesis regaining ambulatory function. On Kaplan-Meier analysis, no differences in survival, target artery patency, or freedom from reintervention were observed at 3 years (P > .05 for all). Freedom from type I or III endoleak (P < .01) and freedom from branch instability (P < .01) were significantly worse in the extensive TAAA group. Cox proportional hazards modeling demonstrated that F/BEVAR for extensive TAAA was not associated with 1-year mortality (hazard ratio, 1.71; 95% confidence interval, 0.91-3.52; P = .13).
Unlike open TAAA repair, the F/BEVAR outcomes were similar for extensive and nonextensive TAAAs. The differences in perioperative paraparesis, branch instability, and type I or III endoleak likely resulted from the increasing length of aortic coverage and number of target arteries involved. These findings suggest that high-volume centers performing F/BEVAR should expect comparable outcomes for extensive and nonextensive TAAA repair.
Diamond KR
,Simons JP
,Crawford AS
,Arous EJ
,Judelson DR
,Aiello F
,Jones DW
,Messina L
,Schanzer A
... -
《-》
-
Outcomes of endovascular repair of chronic postdissection compared with degenerative thoracoabdominal aortic aneurysms using fenestrated-branched stent grafts.
The objective of this study was to analyze outcomes of fenestrated-branched endovascular aneurysm repair (F/BEVAR) for treatment of postdissection and degenerative thoracoabdominal aortic aneurysms (TAAAs).
We reviewed the clinical data of 240 patients with extent I to extent III TAAAs enrolled in seven prospective physician-sponsored investigational device exemption studies from 2014 to 2017. All patients had manufactured off-the-shelf or patient-specific fenestrated-branched stent grafts used to target 888 renal-mesenteric arteries with a mean of 3.7 vessels per patient. End points included mortality, major adverse events (any-cause mortality, stroke, paralysis, dialysis, myocardial infarction, respiratory failure, bowel ischemia, and estimated blood loss >1 L), technical success, target artery patency, target artery instability, occlusion or stenosis, endoleak, rupture or death, reintervention, and renal function deterioration.
There were 50 patients (21%) treated for postdissection TAAAs and 190 (79%) who had degenerative TAAAs. Postdissection TAAA patients were significantly younger (67 ± 9 years vs 74 ± 8 years; P < .001), were more often male (76% vs 52%; P = .002), and had more prior aortic repairs (84% vs 67%; P = .02) and larger renal (6.4 ± 1.2 mm vs 5.8 ± 0.9 mm; P < .001) and mesenteric (8.9 ± 1.7 mm vs 7.8 ± 1.4 mm; P < .001) target artery diameters. There was no difference in aneurysm diameter (66 ± 13 mm vs 67 ± 11 mm; P = .50), extent I or extent II TAAA classification (64% vs 56%; P = .33), and length of supraceliac coverage (22 ± 9.5 cm vs 20 ± 10 cm; P = .38) between postdissection and degenerative patients, respectively. Preloaded guidewire systems (66% vs 43%; P = .003) and fenestrations as opposed to directional branches (58% vs 24%; P < .001) were used more frequently to treat postdissection patients. Technical success was 100% for postdissection TAAAs and 99% for degenerative TAAAs (P = .14). At 30 days, there was no difference in mortality (2% postdissection, 3% degenerative), major adverse events (24% postdissection, 26% degenerative; P = .73), spinal cord injury (6% postdissection, 12% degenerative; P = .25), paraplegia (2% postdissection, 7% degenerative; P = .19), and dialysis (0% postdissection, 5% degenerative; P = .24). Mean follow-up was 14 ± 12 months. Endoleaks were significantly more frequent in patients with postdissection TAAAs (76%) compared with degenerative TAAAs (43%; P < .001). At 2 years, there was no difference in patient survival (84% ± 7% vs 72% ± 4%; P = .13), freedom from aorta-related death (98% ± 2% vs 94% ± 2%; P = .45), primary (95% ± 2% vs 97% ± 1%; P = .93) and secondary target artery patency (99% ± 1% vs 98% ± 1%; P = .48), target artery instability (89% ± 3% vs 91% ± 1%; P = .17), and freedom from reintervention (58% ± 10% vs 67% ± 5%; P = .23) for postdissection and degenerative TAAAs, respectively.
Despite minor differences in demographics, anatomic factors, and stent graft design, F/BEVAR was safe and effective with nearly identical outcomes in patients with postdissection and degenerative TAAAs. Larger clinical experience and longer follow-up are needed to better evaluate differences in mortality, spinal cord injury, target artery instability, and reintervention.
Tenorio ER
,Oderich GS
,Farber MA
,Schneider DB
,Timaran CH
,Schanzer A
,Beck AW
,Motta F
,Sweet MP
,U.S. Fenestrated and Branched Aortic Research Consortium Investigators
... -
《-》