-
Diet supplementation with canola meal improves milk production, reduces enteric methane emissions, and shifts nitrogen excretion from urine to feces in dairy cows.
The objective of this study was to examine the effect of isonitrogenous substitution of solvent-extracted soybean meal (SBM) with solvent-extracted canola meal (CM) on enteric CH4 production, ruminal fermentation characteristics (including protozoa), digestion (in situ and apparent total-tract digestibility), N excretion, and milk production of dairy cows. For this purpose, 16 lactating Holstein cows, of which 12 were ruminally cannulated, were used in a replicated 4 × 4 Latin square (35-d periods; 14-d adaptation). The cows averaged (mean ± SD) 116 ± 23 d in milk, 692 ± 60 kg of body weight, and 47.5 ± 4.9 kg/d of milk production. The experimental treatments were control diet (no CM; 0%CM) and diets supplemented [dry matter (DM) basis] with 7.9% CM (8%CM), 15.8% CM (16%CM), or 23.7% CM (24%CM) on a DM basis. The forage:concentrate ratio was 52:48 (DM basis) and was similar among the experimental diets. Canola meal was included in the diet at the expense of SBM and soybean hulls, whereas the percentages of the other diet ingredients were the same. Intake of DM increased linearly, whereas apparent total-tract digestibility of DM, crude protein, neutral detergent fiber, and gross energy (GE) declined linearly as CM inclusion in the diet increased. Total volatile fatty acids concentration and butyrate molar proportion decreased linearly, whereas molar proportion of propionate increased linearly, and that of acetate was unaffected by CM inclusion in the diet. Ruminal ammonia concentration was not affected by inclusion of CM in the diet. Energy-corrected milk (ECM) yield increased linearly (up to 2.2 kg/d) with increasing CM percentage in the diet, whereas milk production efficiency averaged 1.63 kg of ECM/kg of DM intake and was unaffected by CM inclusion in the diet. Daily CH4 production decreased linearly with increasing CM percentage in the diet (489, 475, 463, and 461 g/d for 0%CM, 8%CM, 16%CM and 24%CM diets, respectively). As a consequence, CH4 emission intensity (g of CH4/kg of ECM) also declined linearly by up to 10% as the amount of CM increased in the diet. Methane production also decreased linearly when expressed relative to GE intake (5.7, 5.2, 5.1, and 4.9% for 0%CM, 8%CM, 16%CM and 24%CM diet, respectively). Quantity of manure N excretion was not affected by replacing SBM with CM; however, N excretion shifted from urine to feces as dietary percentage of CM increased, suggesting reduced potential for N volatilization. Results from this study show that replacing SBM with CM as a protein source in dairy cow diets reduced enteric CH4 emissions (g/d, % of GE intake, and adjusted for milk production) and increased milk production. The study indicates that CM can successfully, partially or fully, replace SBM in lactating dairy cow diets, with positive effects on animal productivity and the environment (i.e., less enteric CH4 emission and urinary N excreted). We conclude that compared with SBM, inclusion of CM meal in dairy cow diets can play a key role in reducing the environmental footprint of milk production.
Benchaar C
,Hassanat F
,Beauchemin KA
,Gislon G
,Ouellet DR
... -
《-》
-
Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows.
In this study, we assessed the effects of increasing amounts of linseed oil (LSO) in corn silage-based diets on enteric CH4 production, rumen fermentation characteristics, protozoal population, nutrient digestibility, N utilization, and milk production. For this purpose, 12 multiparous lactating Holstein cows (84 ± 28 d in milk; mean ± SD) fitted with ruminal cannula were used in a replicated 4 × 4 Latin square design (35-d period). The cows were fed ad libitum a total mixed ration without supplementation (control) or supplemented [on a dry matter (DM) basis] with LSO at 2% (LSO2), 3% (LSO3) or 4% (LSO4). The forage:concentrate ratio was 61:39 (on DM basis) and was similar among the experimental diets. The forage portion consisted of corn silage (58% diet DM) and timothy hay (3% diet DM). The proportions of soybean meal, corn grain and soybean hulls decreased as the amount of LSO in the diet increased. Daily methane production (g/d) decreased quadratically as the amount of LSO increased in the diet. Increasing LSO dietary supplementation caused a linear decrease in CH4 emissions expressed on either DM intake (DMI) basis (-9, -20, and -28%, for LSO2, LSO3, and LSO4, respectively) or gross energy intake basis (-12, -22, and -31%, for LSO2, LSO3, and LSO4, respectively). At 2 and 3% LSO, the decrease in enteric CH4 emissions occurred without negatively affecting DMI or apparent total-tract digestibility of fiber and without changing protozoa numbers. However, these 2 diets caused a shift in volatile fatty acids pattern toward less acetate and more propionate. The effect of the LSO4 diet on enteric CH4 emissions was associated with a decrease in DMI, fiber apparent-total-tract digestibility, protozoa numbers (total and genera), and an increase in propionate proportion at the expense of acetate and butyrate proportions. Methane emission intensity [g of CH4/kg of energy-corrected milk (ECM)] decreased linearly (up to 28% decrease) with increasing LSO level in the diet. Milk fat yield decreased linearly (up to 19% decrease) with increasing inclusion of LSO in the diet. Milk protein yield increased at 2% or 3% LSO and decreased to the same level as that of the nonsupplemented diet at 4% LSO (quadratic effect). Yield of ECM was unchanged by LSO2 and LSO3 treatments but decreased (-2.8 kg/d) upon supplementation with 4% LSO (quadratic effect). Efficiency of milk production (kg ECM/kg DMI) was unaffected by the 3 levels of LSO. Ruminal NH3 concentration was quadratically affected by LSO supplementation; decreasing only at the highest level of LSO supplementation. The amount (g/d) of N excreted in feces and urine decreased linearly and quadratically, respectively, as the amount of LSO increased in the diet, mainly because of the reduction in N intake. Efficiency of dietary N used for milk N secretion increased linearly with increasing LSO supplementation in the diet. We conclude that supplementing corn silage-based diets with 2 or 3% of LSO can reduce enteric CH4 emissions up by to 20% without impairing animal productivity (i.e., ECM yield and feed efficiency).
Hassanat F
,Benchaar C
《-》
-
Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage- or alfalfa silage-based diets.
The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH₄ emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH₃) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH₄ emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average=19.8 g/kg) or gross energy intake (average=5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH₄ production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N₂O) and NH₃ emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH₄ energy losses.
Hassanat F
,Gervais R
,Massé DI
,Petit HV
,Benchaar C
... -
《-》
-
Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.
Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4 emission, which may have been influenced also by increasing starch with increasing CS in the diet as reflected by the increased ruminal propionate molar proportion. Overall, production performances were greatest for the intermediate AS:CS ratios (40:60 and 60:40), but daily excretion of urine, manure, fecal N, urinary urea N, and urinary N decreased with increasing proportion of CS in the diet, whereas daily CH4 emission was reduced for the 2 extreme AS:CS ratios (20:80 and 80:20). However, the proportion of AS and CS in the diet did not affect CH4/fat-and-protein corrected milk.
Arndt C
,Powell JM
,Aguerre MJ
,Wattiaux MA
... -
《-》
-
Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.
The objective of this study was to determine the effects of replacing alfalfa silage (AS) with corn silage (CS) in dairy cow total mixed rations (TMR) on enteric CH4 emissions, ruminal fermentation characteristics, apparent total-tract digestibility, N balance, and milk production. Nine ruminally cannulated lactating cows were used in a replicated 3×3 Latin square design (32-d period) and fed (ad libitum) a TMR [forage:concentrate ratio of 60:40; dry matter (DM) basis], with the forage portion consisting of either alfalfa silage (0% CS; 56.4% AS in the TMR), a 50:50 mixture of both silages (50% CS; 28.2% AS and 28.2% CS in the TMR), or corn silage (100% CS; 56.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of AS) in the diet was achieved by decreasing the corn grain proportion and increasing that of soybean meal. Intake of DM and milk yield increased quadratically, whereas DM digestibility increased linearly as the proportion of CS increased in the diet. Increasing the dietary CS proportion resulted in changes (i.e., lower ruminal pH and acetate:propionate ratio, reduced fiber digestibility, decreased protozoa numbers, and lower milk fat and higher milk protein contents) typical of those observed when cows are fed high-starch diets. A quadratic response in daily CH4 emissions was observed in response to increasing the proportion of CS in the diet (440, 483, and 434 g/d for 0% CS, 50% CS, and 100% CS, respectively). Methane production adjusted for intake of DM, and gross or digestible energy was unaffected in cows fed the 50% CS diet, but decreased in cows fed the 100% CS diet (i.e., quadratic effect). Increasing the CS proportion in the diet at the expense of AS improved N utilization, as reflected by the decreases in ruminal NH3 concentration and manure N excretion, suggesting low potential NH3 and N2O emissions. Results from this study, suggest that total replacement of AS with CS in dairy cow diets offers a means of decreasing CH4 output and N losses. However, the reduction in fiber degradation and the resulting increase in volatile solids content of the manure may lead to increased CH4 emissions from manure storage.
Hassanat F
,Gervais R
,Julien C
,Massé DI
,Lettat A
,Chouinard PY
,Petit HV
,Benchaar C
... -
《-》