Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes.
Tirzepatide is a dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist that is under development for the treatment of type 2 diabetes. The efficacy and safety of once-weekly tirzepatide as compared with semaglutide, a selective GLP-1 receptor agonist, are unknown.
In an open-label, 40-week, phase 3 trial, we randomly assigned 1879 patients, in a 1:1:1:1 ratio, to receive tirzepatide at a dose of 5 mg, 10 mg, or 15 mg or semaglutide at a dose of 1 mg. At baseline, the mean glycated hemoglobin level was 8.28%, the mean age 56.6 years, and the mean weight 93.7 kg. The primary end point was the change in the glycated hemoglobin level from baseline to 40 weeks.
The estimated mean change from baseline in the glycated hemoglobin level was -2.01 percentage points, -2.24 percentage points, and -2.30 percentage points with 5 mg, 10 mg, and 15 mg of tirzepatide, respectively, and -1.86 percentage points with semaglutide; the estimated differences between the 5-mg, 10-mg, and 15-mg tirzepatide groups and the semaglutide group were -0.15 percentage points (95% confidence interval [CI], -0.28 to -0.03; P = 0.02), -0.39 percentage points (95% CI, -0.51 to -0.26; P<0.001), and -0.45 percentage points (95% CI, -0.57 to -0.32; P<0.001), respectively. Tirzepatide at all doses was noninferior and superior to semaglutide. Reductions in body weight were greater with tirzepatide than with semaglutide (least-squares mean estimated treatment difference, -1.9 kg, -3.6 kg, and -5.5 kg, respectively; P<0.001 for all comparisons). The most common adverse events were gastrointestinal and were primarily mild to moderate in severity in the tirzepatide and semaglutide groups (nausea, 17 to 22% and 18%; diarrhea, 13 to 16% and 12%; and vomiting, 6 to 10% and 8%, respectively). Of the patients who received tirzepatide, hypoglycemia (blood glucose level, <54 mg per deciliter) was reported in 0.6% (5-mg group), 0.2% (10-mg group), and 1.7% (15-mg group); hypoglycemia was reported in 0.4% of those who received semaglutide. Serious adverse events were reported in 5 to 7% of the patients who received tirzepatide and in 3% of those who received semaglutide.
In patients with type 2 diabetes, tirzepatide was noninferior and superior to semaglutide with respect to the mean change in the glycated hemoglobin level from baseline to 40 weeks. (Funded by Eli Lilly; SURPASS-2 ClinicalTrials.gov number, NCT03987919.).
Frías JP
,Davies MJ
,Rosenstock J
,Pérez Manghi FC
,Fernández Landó L
,Bergman BK
,Liu B
,Cui X
,Brown K
,SURPASS-2 Investigators
... -
《-》
Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial.
Tirzepatide, a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonist, shows a remarkable ability to lower blood glucose, enabling many patients with long-standing type 2 diabetes to achieve normoglycaemia. We aimed to understand the physiological mechanisms underlying the action of tirzepatide in type 2 diabetes.
This multicentre, randomised, double-blind, parallel-arm, phase 1 study was done at two centres in Germany. Eligible patients were aged 20-74 years, had type 2 diabetes for at least 6 months, and were being treated with lifestyle advice and stable doses of metformin, with or without one additional stable dose of another oral antihyperglycaemic medicine, 3 months before study entry. Via a randomisation table, patients were randomly assigned (3:3:2) to subcutaneously receive either tirzepatide 15 mg, semaglutide 1 mg, or placebo once per week. Endpoint measurements were done at baseline and the last week of therapy (week 28). The primary endpoint was the effect of tirzepatide versus placebo on the change in clamp disposition index (combining measures of insulin secretion and sensitivity) from baseline to week 28 of treatment and was analysed in the pharmacodynamic analysis set, which comprised all randomly assigned participants who received at least one dose of a study drug and had evaluable pharmacodynamic data. Safety was analysed in the safety population, which comprised all randomly assigned participants who received at least one dose of a study drug. Secondary endpoints included the effect of tirzepatide versus semaglutide on the change in clamp disposition index from baseline to week 28 of treatment, glucose control, total insulin secretion rate, M value (insulin sensitivity), and fasting and postprandial glucagon concentrations. Exploratory endpoints included the change in fasting and postprandial insulin concentrations. This study is registered with ClinicalTrials.gov, NCT03951753, and is complete.
Between June 28, 2019, and April 8, 2021, we screened 184 individuals and enrolled 117 participants, all of whom were included in the safety population (45 in the tirzepatide 15 mg group, 44 in the semaglutide 1 mg group, and 28 in the placebo group). Because of discontinuations and exclusions due to missing or unevaluable data, 39 patients in each treatment group and 24 patients in the placebo group comprised the pharmacodynamic analysis set. With tirzepatide, the clamp disposition index increased from a least squares mean of 0·3 pmol m-2 L min-2 kg-1 (SE 0·03) at baseline by 1·9 pmol m-2 L min-2 kg-1 (0·16) to total 2·3 pmol m-2 L min-2 kg-1 (SE 0·16) at week 28 and, with placebo, the clamp disposition index did not change much from baseline (least squares mean at baseline 0·4 pmol m-2 L min-2 kg-1 [SE 0·04]; change from baseline 0·0 pmol m-2 L min-2 kg-1 [0·03]; least squares mean at week 28 0·3 [SE 0·03]; estimated treatment difference [ETD] tirzepatide vs placebo 1·92 [95% CI 1·59-2·24]; p<0·0001). The improvement with tirzepatide in clamp disposition index was significantly greater than with semaglutide (ETD 0·84 pmol m-2 L min-2 kg-1 [95% CI 0·46-1·21]). This result reflected significant improvements in total insulin secretion rate (ETD 102·09 pmol min-1 m-2 [51·84-152·33]) and insulin sensitivity (ETD 1·52 mg min-1 kg-1 [0·53-2·52]) for tirzepatide versus semaglutide. On meal tolerance testing, tirzepatide significantly reduced glucose excursions (lower insulin and glucagon concentrations) compared with placebo, with effects on these variables being greater than with semaglutide. The safety profiles of tirzepatide and semaglutide were similar, with gastrointestinal adverse events being the most common (11 [24%], 13 [30%], and seven [25%] with nausea; nine [20%], 13 [30%], and six [21%] with diarrhoea; and three [7%], five [11%], and one [4%] with vomiting, for tirzepatide, semaglutide, and placebo, respectively). There were no deaths.
The glycaemic efficacy of GIP/GLP-1 receptor agonist tirzepatide in type 2 diabetes results from concurrent improvements in key components of diabetes pathophysiology, namely β-cell function, insulin sensitivity, and glucagon secretion. These effects were large and help to explain the remarkable glucose-lowering ability of tirzepatide seen in phase 3 studies.
Eli Lilly.
Heise T
,Mari A
,DeVries JH
,Urva S
,Li J
,Pratt EJ
,Coskun T
,Thomas MK
,Mather KJ
,Haupt A
,Milicevic Z
... -
《-》
Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial.
LY3298176 is a novel dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist that is being developed for the treatment of type 2 diabetes. We aimed to examine the efficacy and safety of co-stimulation of the GLP-1 and GIP receptors with LY3298176 compared with placebo or selective stimulation of GLP-1 receptors with dulaglutide in patients with poorly controlled type 2 diabetes.
In this double-blind, randomised, phase 2 study, patients with type 2 diabetes were randomly assigned (1:1:1:1:1:1) to receive either once-weekly subcutaneous LY3298176 (1 mg, 5 mg, 10 mg, or 15 mg), dulaglutide (1·5 mg), or placebo for 26 weeks. Assignment was stratified by baseline glycated haemoglobin A1c (HbA1c), metformin use, and body-mass index (BMI). Eligible participants (aged 18-75) had type 2 diabetes for at least 6 months (HbA1c 7·0-10·5%, inclusive), that was inadequately controlled with diet and exercise alone or with stable metformin therapy, and a BMI of 23-50 kg/m2. The primary efficacy outcome was change in HbA1c from baseline to 26 weeks in the modified intention-to-treat (mITT) population (all patients who received at least one dose of study drug and had at least one postbaseline measurement of any outcome). Secondary endpoints, measured in the mITT on treatment dataset, were change in HbA1c from baseline to 12 weeks; change in mean bodyweight, fasting plasma glucose, waist circumference, total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides, and proportion of patients reaching the HbA1c target (≤6·5% and <7·0%) from baseline to weeks 12 and 26; and proportion of patients with at least 5% and 10% bodyweight loss from baseline to 26 weeks. This study is registered with ClinicalTrials.gov, number NCT03131687.
Between May 24, 2017, and March 28, 2018, 555 participants were assessed for eligibility, of whom 318 were randomly assigned to one of the six treatment groups. Because two participants did not receive treatment, the modified intention-to-treat and safety populations included 316 participants. 258 (81·7%) participants completed 26 weeks of treatment, and 283 (89·6%) completed the study. At baseline, mean age was 57 years (SD 9), BMI was 32·6 kg/m2 (5·9), duration from diagnosis of diabetes was 9 years (6), HbA1c was 8·1% (1·0), 53% of patients were men, and 47% were women. At 26 weeks, the effect of LY3298176 on change in HbA1c was dose-dependent and did not plateau. Mean changes from baseline in HbA1c with LY3298176 were -1·06% for 1 mg, -1·73% for 5 mg, -1·89% for 10 mg, and -1·94% for 15 mg, compared with -0·06% for placebo (posterior mean differences [80% credible set] vs placebo: -1·00% [-1·22 to -0·79] for 1 mg, -1·67% [-1·88 to -1·46] for 5 mg, -1·83% [-2·04 to -1·61] for 10 mg, and -1·89% [-2·11 to -1·67] for 15 mg). Compared with dulaglutide (-1·21%) the posterior mean differences (80% credible set) for change in HbA1c from baseline to 26 weeks with the LY3298176 doses were 0·15% (-0·08 to 0·38) for 1 mg, -0·52% (-0·72 to -0·31) for 5 mg, -0·67% (-0·89 to -0·46) for 10 mg, and -0·73% (-0·95 to -0·52) for 15 mg. At 26 weeks, 33-90% of patients treated with LY3298176 achieved the HbA1c target of less than 7·0% (vs 52% with dulaglutide, 12% with placebo) and 15-82% achieved the HbA1c target of at least 6·5% (vs 39% with dulaglutide, 2% with placebo). Changes in fasting plasma glucose ranged from -0·4 mmol/L to -3·4 mmol/L for LY3298176 (vs 0·9 mmol/L for placebo, -1·2 mmol/L for dulaglutide). Changes in mean bodyweight ranged from -0·9 kg to -11·3 kg for LY3298176 (vs -0·4 kg for placebo, -2·7 kg for dulaglutide). At 26 weeks, 14-71% of those treated with LY3298176 achieved the weight loss target of at least 5% (vs 22% with dulaglutide, 0% with placebo) and 6-39% achieved the weight loss target of at least 10% (vs 9% with dulaglutide, 0% with placebo). Changes in waist circumference ranged from -2·1 cm to -10·2 cm for LY3298176 (vs -1·3 cm for placebo, -2·5 cm for dulaglutide). Changes in total cholesterol ranged from 0·2 mmol/L to -0·3 mmol/L for LY3298176 (vs 0·3 mmol/L for placebo, -0·2 mmol/L for dulaglutide). Changes in HDL or LDL cholesterol did not differ between the LY3298176 and placebo groups. Changes in triglyceride concentration ranged from 0 mmol/L to -0·8 mmol/L for LY3298176 (vs 0·3 mmol/L for placebo, -0·3 mmol/L for dulaglutide). The 12-week outcomes were similar to those at 26 weeks for all secondary outcomes. 13 (4%) of 316 participants across the six treatment groups had 23 serious adverse events in total. Gastrointestinal events (nausea, diarrhoea, and vomiting) were the most common treatment-emergent adverse events. The incidence of gastrointestinal events was dose-related (23·1% for 1 mg LY3298176, 32·7% for 5 mg LY3298176, 51·0% for 10 mg LY3298176, and 66·0% for 15 mg LY3298176, 42·6% for dulaglutide, 9·8% for placebo); most events were mild to moderate in intensity and transient. Decreased appetite was the second most common adverse event (3·8% for 1 mg LY3298176, 20·0% for 5 mg LY3298176, 25·5% for 10 mg LY3298176, 18·9% for 15 mg LY3298176, 5·6% for dulaglutide, 2·0% for placebo). There were no reports of severe hypoglycaemia. One patient in the placebo group died from lung adenocarcinoma stage IV, which was unrelated to study treatment.
The dual GIP and GLP-1 receptor agonist, LY3298176, showed significantly better efficacy with regard to glucose control and weight loss than did dulaglutide, with an acceptable safety and tolerability profile. Combined GIP and GLP-1 receptor stimulation might offer a new therapeutic option in the treatment of type 2 diabetes.
Eli Lilly and Company.
Frias JP
,Nauck MA
,Van J
,Kutner ME
,Cui X
,Benson C
,Urva S
,Gimeno RE
,Milicevic Z
,Robins D
,Haupt A
... -
《-》