A novel RdRp-based colorimetric RT-LAMP assay for rapid and sensitive detection of SARS-CoV-2 in clinical and sewage samples from Pakistan.

来自 PUBMED

作者:

Haque MFUBukhari SSEjaz RZaman FUSreejith KRRashid NUmer MShahzad N

展开

摘要:

Novel corona virus SARS-CoV-2, causing coronavirus disease 2019 (COVID-19), has become a global health challenge particularly for developing countries like Pakistan where overcrowded cities, inadequate sanitation, little health awareness and poor socioeconomic conditions exist. The SARS-CoV-2 has been known to spread primarily through direct contact and respiratory droplets. However, detection of SARS-CoV-2 in stool and sewage have raised the possibility of fecal-oral mode of transmission. Currently, quantitative reverse-transcriptase PCR (qRT-PCR) is the only method being used for SARS-CoV-2 detection, which requires expensive instrumentation, dedicated laboratory setup, highly skilled staff, and several hours to report results. Considering the high transmissibility and rapid spread, a robust, sensitive, specific and cheaper assay for rapid SARS-CoV-2 detection is highly needed. Herein, we report a novel colorimetric RT-LAMP assay for naked-eye detection of SARS-COV-2 in clinical as well as sewage samples. Our SARS-CoV-2 RdRp-based LAMP assay could successfully detect the virus RNA in 26/28 (93%) of RT-PCR positive COVID-19 clinical samples with 100% specificity (n = 7) within 20 min. We also tested the effect of various additives on the performance of LAMP assay and found that addition of 1 mg/ml bovine serum albumin (BSA) could increase the sensitivity of assay up to 101 copies of target sequence. Moreover, we also successfully applied this assay to detect SARS-CoV-2 in sewage waters collected from those areas of Lahore, a city of Punjab province of Pakistan, declared as virus hotspots by local government. Our optimized LAMP assay could provide a sensitive first tier strategy for SARS-CoV-2 screening and can potentially help diagnostic laboratories in better handling of high sample turnout during pandemic situation. By providing rapid naked-eye SARS-CoV-2 detection in sewage samples, this assay may support pandemic readiness and emergency response to any possible virus outbreaks in future.

收起

展开

DOI:

10.1016/j.virusres.2021.198484

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(216)

参考文献(42)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读