Risk of hospital admission for patients with SARS-CoV-2 variant B.1.1.7: cohort analysis.
To evaluate the relation between diagnosis of covid-19 with SARS-CoV-2 variant B.1.1.7 (also known as variant of concern 202012/01) and the risk of hospital admission compared with diagnosis with wild-type SARS-CoV-2 variants.
Retrospective cohort analysis.
Community based SARS-CoV-2 testing in England, individually linked with hospital admission data.
839 278 patients with laboratory confirmed covid-19, of whom 36 233 had been admitted to hospital within 14 days, tested between 23 November 2020 and 31 January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF), a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test.
Hospital admission between one and 14 days after the first positive SARS-CoV-2 test.
27 710 (4.7%) of 592 409 patients with SGTF variants and 8523 (3.5%) of 246 869 patients without SGTF variants had been admitted to hospital within one to 14 days. The stratum adjusted hazard ratio of hospital admission was 1.52 (95% confidence interval 1.47 to 1.57) for patients with covid-19 infected with SGTF variants, compared with those infected with non-SGTF variants. The effect was modified by age (P<0.001), with hazard ratios of 0.93-1.21 in patients younger than 20 years with versus without SGTF variants, 1.29 in those aged 20-29, and 1.45-1.65 in those aged ≥30 years. The adjusted absolute risk of hospital admission within 14 days was 4.7% (95% confidence interval 4.6% to 4.7%) for patients with SGTF variants and 3.5% (3.4% to 3.5%) for those with non-SGTF variants.
The results suggest that the risk of hospital admission is higher for people infected with the B.1.1.7 variant compared with wild-type SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults older than 30 years.
Nyberg T
,Twohig KA
,Harris RJ
,Seaman SR
,Flannagan J
,Allen H
,Charlett A
,De Angelis D
,Dabrera G
,Presanis AM
... -
《BMJ-British Medical Journal》
Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: an observational cohort study.
A more transmissible variant of SARS-CoV-2, the variant of concern 202012/01 or lineage B.1.1.7, has emerged in the UK. We aimed to estimate the risk of critical care admission, mortality in patients who are critically ill, and overall mortality associated with lineage B.1.1.7 compared with non-B.1.1.7. We also compared clinical outcomes between these two groups.
For this observational cohort study, we linked large primary care (QResearch), national critical care (Intensive Care National Audit & Research Centre Case Mix Programme), and national COVID-19 testing (Public Health England) databases. We used SARS-CoV-2 positive samples with S-gene molecular diagnostic assay failure (SGTF) as a proxy for the presence of lineage B.1.1.7. We extracted two cohorts from the data: the primary care cohort, comprising patients in primary care with a positive community COVID-19 test reported between Nov 1, 2020, and Jan 26, 2021, and known SGTF status; and the critical care cohort, comprising patients admitted for critical care with a positive community COVID-19 test reported between Nov 1, 2020, and Jan 27, 2021, and known SGTF status. We explored the associations between SARS-CoV-2 infection with and without lineage B.1.1.7 and admission to a critical care unit (CCU), 28-day mortality, and 28-day mortality following CCU admission. We used Royston-Parmar models adjusted for age, sex, geographical region, other sociodemographic factors (deprivation index, ethnicity, household housing category, and smoking status for the primary care cohort; and ethnicity, body-mass index, deprivation index, and dependency before admission to acute hospital for the CCU cohort), and comorbidities (asthma, chronic obstructive pulmonary disease, type 1 and 2 diabetes, and hypertension for the primary care cohort; and cardiovascular disease, respiratory disease, metastatic disease, and immunocompromised conditions for the CCU cohort). We reported information on types and duration of organ support for the B.1.1.7 and non-B.1.1.7 groups.
The primary care cohort included 198 420 patients with SARS-CoV-2 infection. Of these, 117 926 (59·4%) had lineage B.1.1.7, 836 (0·4%) were admitted to CCU, and 899 (0·4%) died within 28 days. The critical care cohort included 4272 patients admitted to CCU. Of these, 2685 (62·8%) had lineage B.1.1.7 and 662 (15·5%) died at the end of critical care. In the primary care cohort, we estimated adjusted hazard ratios (HRs) of 2·15 (95% CI 1·75-2·65) for CCU admission and 1·65 (1·36-2·01) for 28-day mortality for patients with lineage B.1.1.7 compared with the non-B.1.1.7 group. The adjusted HR for mortality in critical care, estimated with the critical care cohort, was 0·91 (0·76-1·09) for patients with lineage B.1.1.7 compared with those with non-B.1.1.7 infection.
Patients with lineage B.1.1.7 were at increased risk of CCU admission and 28-day mortality compared with patients with non-B.1.1.7 SARS-CoV-2. For patients receiving critical care, mortality appeared to be independent of virus strain. Our findings emphasise the importance of measures to control exposure to and infection with COVID-19.
Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, and the Medical Sciences Division of the University of Oxford.
Patone M
,Thomas K
,Hatch R
,Tan PS
,Coupland C
,Liao W
,Mouncey P
,Harrison D
,Rowan K
,Horby P
,Watkinson P
,Hippisley-Cox J
... -
《-》
Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study.
The SARS-CoV-2 omicron variant of concern was identified in South Africa in November, 2021, and was associated with an increase in COVID-19 cases. We aimed to assess the clinical severity of infections with the omicron variant using S gene target failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy.
We did data linkages for national, South African COVID-19 case data, SARS-CoV-2 laboratory test data, SARS-CoV-2 genome data, and COVID-19 hospital admissions data. For individuals diagnosed with COVID-19 via TaqPath PCR tests, infections were designated as either SGTF or non-SGTF. The delta variant was identified by genome sequencing. Using multivariable logistic regression models, we assessed disease severity and hospitalisations by comparing individuals with SGTF versus non-SGTF infections diagnosed between Oct 1 and Nov 30, 2021, and we further assessed disease severity by comparing SGTF-infected individuals diagnosed between Oct 1 and Nov 30, 2021, with delta variant-infected individuals diagnosed between April 1 and Nov 9, 2021.
From Oct 1 (week 39), 2021, to Dec 6 (week 49), 2021, 161 328 cases of COVID-19 were reported in South Africa. 38 282 people were diagnosed via TaqPath PCR tests and 29 721 SGTF infections and 1412 non-SGTF infections were identified. The proportion of SGTF infections increased from two (3·2%) of 63 in week 39 to 21 978 (97·9%) of 22 455 in week 48. After controlling for factors associated with hospitalisation, individuals with SGTF infections had significantly lower odds of admission than did those with non-SGTF infections (256 [2·4%] of 10 547 vs 121 [12·8%] of 948; adjusted odds ratio [aOR] 0·2, 95% CI 0·1-0·3). After controlling for factors associated with disease severity, the odds of severe disease were similar between hospitalised individuals with SGTF versus non-SGTF infections (42 [21%] of 204 vs 45 [40%] of 113; aOR 0·7, 95% CI 0·3-1·4). Compared with individuals with earlier delta variant infections, SGTF-infected individuals had a significantly lower odds of severe disease (496 [62·5%] of 793 vs 57 [23·4%] of 244; aOR 0·3, 95% CI 0·2-0·5), after controlling for factors associated with disease severity.
Our early analyses suggest a significantly reduced odds of hospitalisation among individuals with SGTF versus non-SGTF infections diagnosed during the same time period. SGTF-infected individuals had a significantly reduced odds of severe disease compared with individuals infected earlier with the delta variant. Some of this reduced severity is probably a result of previous immunity.
The South African Medical Research Council, the South African National Department of Health, US Centers for Disease Control and Prevention, the African Society of Laboratory Medicine, Africa Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the Fleming Fund.
Wolter N
,Jassat W
,Walaza S
,Welch R
,Moultrie H
,Groome M
,Amoako DG
,Everatt J
,Bhiman JN
,Scheepers C
,Tebeila N
,Chiwandire N
,du Plessis M
,Govender N
,Ismail A
,Glass A
,Mlisana K
,Stevens W
,Treurnicht FK
,Makatini Z
,Hsiao NY
,Parboosing R
,Wadula J
,Hussey H
,Davies MA
,Boulle A
,von Gottberg A
,Cohen C
... -
《-》
Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study.
The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes.
This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status.
Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17-43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32-3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08-1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47-8·05] and for hospital admission or emergency care attendance 1·58 [0·69-3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29-4·16] and 1·43 [1·04-1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low.
This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant.
Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research.
Twohig KA
,Nyberg T
,Zaidi A
,Thelwall S
,Sinnathamby MA
,Aliabadi S
,Seaman SR
,Harris RJ
,Hope R
,Lopez-Bernal J
,Gallagher E
,Charlett A
,De Angelis D
,Presanis AM
,Dabrera G
,COVID-19 Genomics UK (COG-UK) consortium
... -
《-》