Glymphatic clearance function in patients with cerebral small vessel disease.

来自 PUBMED

作者:

Zhang WZhou YWang JGong XChen ZZhang XCai JChen SFang LSun JLou M

展开

摘要:

Few studies have focused on the connection between glymphatic dysfunction and cerebral small vessel disease (CSVD), partially due to the lack of non-invasive methods to measure glymphatic function. We established modified index for diffusion tensor image analysis along the perivascular space (mALPS-index), which was calculated on diffusion tensor image (DTI), compared it with the classical detection of glymphatic clearance function calculated on Glymphatic MRI after intrathecal administration of gadolinium (study 1), and analyzed the relationship between CSVD imaging markers and mALPS-index in CSVD patients from the CIRCLE study (ClinicalTrials.gov ID: NCT03542734) (study 2). Among 39 patients included in study 1, mALPS-index were significantly related to glymphatic clearance function calculated on Glymphatic MRI ( r  = -0.772~-0.844, p < 0.001). A total of 330 CSVD patients were included in study 2. Severer periventricular and deep white matter hyperintensities (β = -0.332, p < 0.001; β = -0.293, p < 0.001), number of lacunas (β = -0.215, p < 0.001), number of microbleeds (β = -0.152, p = 0.005), and severer enlarged perivascular spaces in basal ganglia (β = -0.223, p < 0.001) were related to mALPS-index. Our results indicated that non-invasive mALPS-index might represent glymphatic clearance function, which could be applied in clinic in future. Glymphatic clearance function might play a role in the development of CSVD.

收起

展开

DOI:

10.1016/j.neuroimage.2021.118257

被引量:

141

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(294)

参考文献(0)

引证文献(141)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读