-
Arterolane-piperaquine-mefloquine versus arterolane-piperaquine and artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children: a single-centre, open-label, randomised, non-inferiority trial.
Triple antimalarial combination therapies combine potent and rapidly cleared artemisinins or related synthetic ozonides, such as arterolane, with two, more slowly eliminated partner drugs to reduce the risk of resistance. We aimed to assess the safety, tolerability, and efficacy of arterolane-piperaquine-mefloquine versus arterolane-piperaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Kenyan children.
In this single-centre, open-label, randomised, non-inferiority trial done in Kilifi County Hospital, Kilifi, coastal Kenya, children with uncomplicated Plasmodium falciparum malaria were recruited. Eligible patients were aged 2-12 years and had an asexual parasitaemia of 5000-250 000 parasites per μL. The exclusion criteria included the presence of an acute illness other than malaria, the inability to tolerate oral medications, treatment with an artemisinin derivative in the previous 7 days, a known hypersensitivity or contraindication to any of the study drugs, and a QT interval corrected for heart rate (QTc interval) longer than 450 ms. Patients were randomly assigned (1:1:1), by use of blocks of six, nine, and 12, and opaque, sealed, and sequentially numbered envelopes, to receive either arterolane-piperaquine, arterolane-piperaquine-mefloquine, or artemether-lumefantrine. Laboratory staff, but not the patients, the patients' parents or caregivers, clinical or medical officers, nurses, or trial statistician, were masked to the intervention groups. For 3 days, oral artemether-lumefantrine was administered twice daily (target dose 5-24 mg/kg of bodyweight of artemether and 29-144 mg/kg of bodyweight of lumefantrine), and oral arterolane-piperaquine (arterolane dose 4 mg/kg of bodyweight; piperaquine dose 20 mg/kg of bodyweight) and oral arterolane-piperaquine-mefloquine (mefloquine dose 8 mg/kg of bodyweight) were administered once daily. All patients received 0·25 mg/kg of bodyweight of oral primaquine at hour 24. All patients were admitted to Kilifi County Hospital for at least 3 consecutive days and followed up at day 7 and, thereafter, weekly for up to 42 days. The primary endpoint was 42-day PCR-corrected efficacy, defined as the absence of treatment failure in the first 42 days post-treatment, of arterolane-piperaquine-mefloquine versus artemether-lumefantrine, and, along with safety, was analysed in the intention-to-treat population, which comprised all patients who received at least one dose of a study drug. The 42-day PCR-corrected efficacy of arterolane-piperaquine-mefloquine versus arterolane-piperaquine was an important secondary endpoint and was also analysed in the intention-to-treat population. The non-inferiority margin for the risk difference between treatments was -7%. The study is registered in ClinicalTrials.gov, NCT03452475, and is completed.
Between March 7, 2018, and May 2, 2019, 533 children with P falciparum were screened, of whom 217 were randomly assigned to receive either arterolane-piperaquine (n=73), arterolane-piperaquine-mefloquine (n=72), or artemether-lumefantrine (n=72) and comprised the intention-to-treat population. The 42-day PCR-corrected efficacy after treatment with arterolane-piperaquine-mefloquine (100%, 95% CI 95-100; 72/72) was non-inferior to that after treatment with artemether-lumefantrine (96%, 95% CI 88-99; 69/72; risk difference 4%, 95% CI 0-9; p=0·25). The 42-day PCR-corrected efficacy of arterolane-piperaquine-mefloquine was non-inferior to that of arterolane-piperaquine (100%, 95% CI 95-100; 73/73; risk difference 0%). Vomiting rates in the first hour post-drug administration were significantly higher in patients treated with arterolane-piperaquine (5%, 95% CI 2-9; ten of 203 drug administrations; p=0·0013) or arterolane-piperaquine-mefloquine (5%, 3-9; 11 of 209 drug administrations; p=0·0006) than in patients treated with artemether-lumefantrine (1%, 0-2; three of 415 drug administrations). Upper respiratory tract complaints (n=26 for artemether-lumefantrine; n=19 for arterolane-piperaquine-mefloquine; n=23 for arterolane-piperaquine), headache (n=13; n=4; n=5), and abdominal pain (n=7; n=5; n=5) were the most frequently reported adverse events. There were no deaths.
This study shows that arterolane-piperaquine-mefloquine is an efficacious and safe treatment for uncomplicated falciparum malaria in children and could potentially be used to prevent or delay the emergence of antimalarial resistance.
UK Department for International Development, The Wellcome Trust, The Bill & Melinda Gates Foundation, Sun Pharmaceutical Industries.
Hamaluba M
,van der Pluijm RW
,Weya J
,Njuguna P
,Ngama M
,Kalume P
,Mwambingu G
,Ngetsa C
,Wambua J
,Boga M
,Mturi N
,Lal AA
,Khuroo A
,Taylor WRJ
,Gonçalves S
,Miotto O
,Dhorda M
,Mutinda B
,Mukaka M
,Waithira N
,Hoglund RM
,Imwong M
,Tarning J
,Day NPJ
,White NJ
,Bejon P
,Dondorp AM
... -
《-》
-
Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial.
Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance.
In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete.
Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50).
Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance.
UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.
van der Pluijm RW
,Tripura R
,Hoglund RM
,Pyae Phyo A
,Lek D
,Ul Islam A
,Anvikar AR
,Satpathi P
,Satpathi S
,Behera PK
,Tripura A
,Baidya S
,Onyamboko M
,Chau NH
,Sovann Y
,Suon S
,Sreng S
,Mao S
,Oun S
,Yen S
,Amaratunga C
,Chutasmit K
,Saelow C
,Runcharern R
,Kaewmok W
,Hoa NT
,Thanh NV
,Hanboonkunupakarn B
,Callery JJ
,Mohanty AK
,Heaton J
,Thant M
,Gantait K
,Ghosh T
,Amato R
,Pearson RD
,Jacob CG
,Gonçalves S
,Mukaka M
,Waithira N
,Woodrow CJ
,Grobusch MP
,van Vugt M
,Fairhurst RM
,Cheah PY
,Peto TJ
,von Seidlein L
,Dhorda M
,Maude RJ
,Winterberg M
,Thuy-Nhien NT
,Kwiatkowski DP
,Imwong M
,Jittamala P
,Lin K
,Hlaing TM
,Chotivanich K
,Huy R
,Fanello C
,Ashley E
,Mayxay M
,Newton PN
,Hien TT
,Valecha N
,Smithuis F
,Pukrittayakamee S
,Faiz A
,Miotto O
,Tarning J
,Day NPJ
,White NJ
,Dondorp AM
,Tracking Resistance to Artemisinin Collaboration
... -
《-》
-
Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial.
Artemether-lumefantrine and artesunate-amodiaquine are used as first-line artemisinin-based combination therapies (ACTs) in west Africa. Pyronaridine-artesunate and dihydroartemisinin-piperaquine are potentially useful for diversification of ACTs in this region, but further safety and efficacy data are required on malaria retreatment.
We did a randomised, multicentre, open-label, longitudinal, controlled phase 3b/4 clinical trial at seven tertiary centres in Burkina Faso, Guinea, and Mali. Eligible participants for first malaria episode and all retreatment episodes were adults and children aged 6 months and older with microscopically confirmed Plasmodium spp malaria (>0 to <200 000 parasites per μL of blood) and fever or history of fever in the previous 24 h. Individuals with severe or complicated malaria, an alanine aminotransferase concentration of more than twice the upper limit of normal, or a QTc greater than 450 ms were excluded. Using a randomisation list for each site, masked using sealed envelopes, participants were assigned to either pyronaridine-artesunate or dihydroartemisinin-piperaquine versus either artesunate-amodiaquine or artemether-lumefantrine. Block sizes were two or four if two treatments were allocated, and three or six if three treatments were allocated. Microscopists doing the parasitological assessments were masked to treatment allocation. All treatments were once-daily or twice-daily tablets or granules given orally and dosed by bodyweight over 3 days at the study centre. Patients were followed up as outpatients up to day 42, receiving clinical assessments on days 0, 1, 2, 3, 7, 14, 21, 28, 35, and 42. Two primary outcomes were compared for non-inferiority: the 2-year incidence rate of all microscopically confirmed, complicated and uncomplicated malaria episodes in patients in the intention-to-treat population (ITT; non-inferiority margin 20%); and adequate clinical and parasitological response (ACPR) in uncomplicated malaria across all episodes (unadjusted and PCR-adjusted for Plasmodium falciparum and unadjusted for other Plasmodium spp) in the per-protocol population on days 28 and 42 (non-inferiority margin 5%). Safety was assessed in all participants who received one dose of study drug. This study is registered at the Pan African Clinical Trials Registry (PACTR201105000286876).
Between Oct 24, 2011, and Feb 1, 2016, we assigned 4710 eligible participants to the different treatment strategies: 1342 to pyronaridine-artesunate, 967 to artemether-lumefantrine, 1061 to artesunate-amodiaquine, and 1340 to dihydroartemisinin-piperaquine. The 2-year malaria incidence rate in the ITT population was non-inferior for pyronaridine-artesunate versus artemether-lumefantrine (1·77, 95% CI 1·63-1·93 vs 1·87, 1·72-2·03; rate ratio [RR] 1·05, 95% CI 0·94-1·17); and versus artesunate-amodiaquine (1·39, 95% CI 1·22-1·59 vs 1·35, 1·18-1·54; RR 0·97, 0·87-1·07). Similarly, this endpoint was non-inferior for dihydroartemisinin-piperaquine versus artemether-lumefantrine (1·16, 95% CI 1·01-1·34 vs 1·42 1·25-1·62; RR 1·22, 95% CI 1·06-1·41) and versus artesunate-amodiaquine (1·35, 1·21-1·51 vs 1·68, 1·51-1·88; RR 1·25, 1·02-1·50). For uncomplicated P falciparum malaria, PCR-adjusted ACPR was greater than 99·5% at day 28 and greater than 98·6% at day 42 for all ACTs; unadjusted ACPR was higher for pyronaridine-artesunate versus comparators at day 28 (96·9% vs 82·3% for artemether-lumefantrine and 95·6% vs 89·0% for artesunate-amodiaquine) and for dihydroartemisinin-piperaquine versus comparators (99·5% vs 81·6% for artemether-lumefantrine and 99·0% vs 89·0% for artesunate-amodiaquine). For non-falciparum species, unadjusted ACPR was greater than 98% for all study drugs at day 28 and at day 42 was greater than 83% except for artemether-lumefantrine against Plasmodium ovale (in ten [62·5%] of 16 patients) and against Plasmodium malariae (in nine [75·0%] of 12 patients). Nine deaths occurred during the study, none of which were related to the study treatment. Mostly mild transient elevations in transaminases occurred with pyronaridine-artesunate versus comparators, and mild QTcF prolongation with dihydroartemisinin-piperaquine versus comparators.
Pyronaridine-artesunate and dihydroartemisinin-piperaquine treatment and retreatment of malaria were well tolerated with efficacy that was non-inferior to first-line ACTs. Greater access to these efficacious treatments in west Africa is justified.
The European and Developing Countries Clinical Trial Partnership, Medicines for Malaria Venture (Geneva, Switzerland), the UK Medical Research Council, the Swedish International Development Cooperation Agency, German Ministry for Education and Research, University Claude Bernard (Lyon, France), University of Science, Techniques and Technologies of Bamako (Bamako, Mali), the Centre National de Recherche et de Formation sur le Paludisme (Burkina Faso), Institut de Recherche en Sciences de la Santé (Bobo-Dioulasso, Burkina Faso), and Centre National de Formation et de Recherche en Santé Rurale (Republic of Guinea).
West African Network for Clinical Trials of Antimalarial Drugs (WANECAM)
《-》
-
Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: an open-label randomised trial.
Artemisinin-combination therapy (ACT) is recommended as first-line treatment of falciparum malaria throughout the world, and fixed-dose combinations are preferred by WHO; whether a single gametocytocidal dose of primaquine should be added is unknown. We aimed to compare effectiveness of four fixed-dose ACTs and a loose tablet combination of artesunate and mefloquine, and assess the addition of a single gametocytocidal dose of primaquine.
In an open-label randomised trial in clinics in Rakhine state, Kachin state, and Shan state in Myanmar (Burma) between Dec 30, 2008, and March 20, 2009, we compared the effectiveness of all four WHO-recommended fixed-dose ACTs (artesunate-mefloquine, artesunate-amodiaquine, dihydroartemisinin-piperaquine, artemether-lumefantrine) and loose artesunate-mefloquine in Burmese adults and children. Eligible patients were those who presented to the clinics with acute uncomplicated Plasmodium falciparum malaria or mixed infection, who were older than 6 months, and who weighed more than 5 kg. Treatments were randomised in equal numbers within blocks of 50 and allocation was in sealed envelopes. All patients were also randomly assigned to receive either a single dose of primaquine 0·75 mg base/kg or not. Patients were followed up for 63 days. Treatment groups were compared by analysis of variance and multiple logistic regression. The primary outcome was the 63 day recrudescence rate. This study is registered with clinicaltrials.gov, number NCT00902811.
155 patients received artesunate-amodiaquine, 162 artemether-lumefantrine, 169 artesunate-mefloquine, 161 loose artesunate-mefloquine, and 161 dihydroartemisinin-piperaquine. By day 63 of follow-up, 14 patients (9·4%; 95% CI 5·7-15·3%) on artesunate-amodiaquine had recrudescent P falciparum infections, a rate significantly higher than for artemether-lumefantrine (two patients; 1·4%; 0·3-5·3; p=0·0013), fixed-dose artesunate-mefloquine (0 patients; 0-2·3; p<0·0001), loose artesunate-mefloquine (two patients; 1·3%; 0·3-5·3; p=0·0018), and dihydroartemisinin-piperaquine (two patients 1·3%; 0·3-5·2%; p=0·0012). Hazard ratios for re-infection (95% CI) after artesunate-amodiaquine were 3·2 (1·3-8·0) compared with the two artesunate-mefloquine groups (p=0·01), 2·6 (1·0-6-0) compared with artemether-lumefantrine (p=0·04), and 2·3 (0·9-6·0) compared with dihydroartemisinin-piperaquine (p=0·08). Mixed falciparum and vivax infections were common: 129 (16%) had a mixed infection at presentation and 330 (41%) patients had one or more episodes of Plasmodium vivax infection during follow-up. The addition of a single dose of primaquine (0·75 mg/kg) reduced P falciparum gametocyte carriage substantially: rate ratio 11·9 (95% CI 7·4-20·5). All regimens were well tolerated. Adverse events were reported by 599 patients, most commonly vomiting and dizziness. Other side-effects were less common and were not related to a specific treatment.
Artesunate-amodiaquine should not be used in Myanmar, because the other ACTs are substantially more effective. Artesunate-mefloquine provided the greatest post-treatment suppression of malaria. Adding a single dose of primaquine would substantially reduce transmission potential. Vivax malaria, not recurrent falciparum malaria, is the main complication after treatment of P falciparum infections in this region.
Médecins sans Frontières (Holland) and the Wellcome Trust Mahidol University Oxford Tropical Medicine Research Programme.
Smithuis F
,Kyaw MK
,Phe O
,Win T
,Aung PP
,Oo AP
,Naing AL
,Nyo MY
,Myint NZ
,Imwong M
,Ashley E
,Lee SJ
,White NJ
... -
《-》
-
AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, phase 2, non-inferiority clinical trial.
Chloroquine was used for malaria treatment until resistant Plasmodium falciparum was identified. Because 4-aminoquinolines with modified side chains, such as AQ-13, are active against resistant parasites, we compared AQ-13 against artemether plus lumefantrine for treatment of uncomplicated P falciparum malaria.
We did a randomised, non-inferiority trial. We screened men (≥18 years) with uncomplicated malaria in Missira (northeast Mali) and Bamako (capital of Mali) for eligibility (≥2000 asexual P falciparum parasites per μL of blood). Eligible participants were randomly assigned to either the artemether plus lumefantrine group or AQ-13 group by permuting blocks of four with a random number generator. Physicians and others caring for the participants were masked, except for participants who received treatment and the research pharmacist who implemented the randomisation and provided treatment. Participants received either 80 mg of oral artemether and 480 mg of oral lumefantrine twice daily for 3 days or 638·50 mg of AQ-13 base (two oral capsules) on days 1 and 2, and 319·25 mg base (one oral capsule) on day 3. Participants were monitored for parasite clearance (50 μL blood samples twice daily at 12 h intervals until two consecutive negative samples were obtained) and interviewed for adverse events (once every day) as inpatients during week 1. During the 5-week outpatient follow-up, participants were examined for adverse events and recurrent infection twice per week. All participants were included in the intention-to-treat analysis and per-protocol analysis, except for those who dropped out in the per-protocol analysis. The composite primary outcome was clearance of asexual parasites and fever by day 7, and absence of recrudescent infection by parasites with the same molecular markers from days 8 to 42 (defined as cure). Non-inferiority was considered established if the proportion of patients who were cured was higher for artemether plus lumefantrine than for AQ-13 and the upper limit of the 95% CI was less than the non-inferiority margin of 15%. This trial is registered at ClinicalTrials.gov, number NCT01614964.
Between Aug 6 and Nov 18, 2013, and between Sept 18 and Nov 20, 2015, 66 Malian men with uncomplicated malaria were enrolled. 33 participants were randomly assigned to each group. There were no serious adverse events (grade 2-4) and asexual parasites were cleared by day 7 in both groups. 453 less-severe adverse events (≤grade 1) were reported: 214 in the combination group and 239 in the AQ-13 group. Two participants withdrew from the AQ-13 group after parasite clearance and three were lost to follow-up. In the artemether plus lumefantrine group, two participants had late treatment failures (same markers as original isolates). On the basis of the per-protocol analysis, the AQ-13 and artemether plus lumefantrine groups had similar proportions cured (28 [100%] of 28 vs 31 [93·9%] of 33; p=0·50) and AQ-13 was not inferior to artemether plus lumefantrine (difference -6·1%, 95% CI -14·7 to 2·4). Proportions cured were also similar between the groups in the intention-to-treat analysis (28 of 33, 84·8% for AQ-13 vs 31 of 33, 93·9% for artemether and lumefantrine; p=0·43) but the upper bound of the 95% CI exceeded the 15% non-inferiority margin (difference 9·1%, 95% CI -5·6 to 23·8).
The per-protocol analysis suggested non-inferiority of AQ-13 to artemether plus lumefantrine. By contrast, the intention-to-treat analysis, which included two participants who withdrew and three who were lost to follow-up from the AQ-13 group, did not meet the criterion for non-inferiority of AQ-13, although there were no AQ-13 treatment failures. Studies with more participants (and non-immune participants) are needed to decide whether widespread use of modified 4-aminoquinolones should be recommended.
US Food and Drug Administration Orphan Product Development, National Institutes of Health, US Centers for Disease Control and Prevention, Burroughs-Wellcome Fund, US State Department, and WHO.
Koita OA
,Sangaré L
,Miller HD
,Sissako A
,Coulibaly M
,Thompson TA
,Fongoro S
,Diarra Y
,Ba M
,Maiga A
,Diallo B
,Mushatt DM
,Mather FJ
,Shaffer JG
,Anwar AH
,Krogstad DJ
... -
《-》