AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset.

来自 PUBMED

作者:

Yoo HLee SHArru CDDoda Khera RSingh RSiebert SKim DLee YPark JHEom HJDigumarthy SRKalra MK

展开

摘要:

Assess if deep learning-based artificial intelligence (AI) algorithm improves reader performance for lung cancer detection on chest X-rays (CXRs). This reader study included 173 images from cancer-positive patients (n = 98) and 346 images from cancer-negative patients (n = 196) selected from National Lung Screening Trial (NLST). Eight readers, including three radiology residents, and five board-certified radiologists, participated in the observer performance test. AI algorithm provided image-level probability of pulmonary nodule or mass on CXRs and a heatmap of detected lesions. Reader performance was compared with AUC, sensitivity, specificity, false-positives per image (FPPI), and rates of chest CT recommendations. With AI, the average sensitivity of readers for the detection of visible lung cancer increased for residents, but was similar for radiologists compared to that without AI (0.61 [95% CI, 0.55-0.67] vs. 0.72 [95% CI, 0.66-0.77], p = 0.016 for residents, and 0.76 [95% CI, 0.72-0.81] vs. 0.76 [95% CI, 0.72-0.81, p = 1.00 for radiologists), while false-positive findings per image (FPPI) was similar for residents, but decreased for radiologists (0.15 [95% CI, 0.11-0.18] vs. 0.12 [95% CI, 0.09-0.16], p = 0.13 for residents, and 0.24 [95% CI, 0.20-0.29] vs. 0.17 [95% CI, 0.13-0.20], p < 0.001 for radiologists). With AI, the average rate of chest CT recommendation in patients positive for visible cancer increased for residents, but was similar for radiologists (54.7% [95% CI, 48.2-61.2%] vs. 70.2% [95% CI, 64.2-76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0-77.1%] vs. 73.9% [95% CI, 69.4-78.3%], p = 0.68 for radiologists), while that in cancer-negative patients was similar for residents, but decreased for radiologists (11.2% [95% CI, 9.6-13.1%] vs. 9.8% [95% CI, 8.0-11.6%], p = 0.32 for residents and 16.4% [95% CI, 14.7-18.2%] vs. 11.7% [95% CI, 10.2-13.3%], p < 0.001 for radiologists). AI algorithm can enhance the performance of readers for the detection of lung cancers on chest radiographs when used as second reader. • Reader study in the NLST dataset shows that AI algorithm had sensitivity benefit for residents and specificity benefit for radiologists for the detection of visible lung cancer. • With AI, radiology residents were able to recommend more chest CT examinations (54.7% vs 70.2%, p < 0.001) for patients with visible lung cancer. • With AI, radiologists recommended significantly less proportion of unnecessary chest CT examinations (16.4% vs. 11.7%, p < 0.001) in cancer-negative patients.

收起

展开

DOI:

10.1007/s00330-021-08074-7

被引量:

26

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(726)

参考文献(18)

引证文献(26)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读