Luteolin ameliorates LPS-induced acute liver injury by inhibiting TXNIP-NLRP3 inflammasome in mice.
摘要:
Chemical liver injury is one of the main causes of acute liver failure and death. To date, however, treatment strategies for acute liver injury have been limited. Therefore, there is an urgent need to find new therapeutic targets and effective drugs. NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is a complex of multiple proteins that has been shown to induce cell death under inflammatory and stress pathologic conditions and is thought to provide new targets for the treatment of a variety of diseases. The purpose of this study was to investigate whether luteolin has a protective effect on the liver and further elucidate whether it is realized through the thioredoxin interacting protein (TXNIP)-NLRP3 axis. Acute hepatic injury in mice caused by intraperitoneal injection of lipopolysaccharide (LPS) was treated with or without luteolin. Male C57BL/6 mice and mouse primary hepatocytes were selected. TXNIP protein knockdown was achieved by siRNA, qPCR and Western blot were performed to explore the mechanism of luteolin in alleviating acute liver injury. The results indicated that luteolin had a markedly protective effect on acute liver injury induced by LPS in mice by inhibiting the TXNIP-NLRP3 axis. Luteolin inhibits NLRP3 inflammasome activation by suppressing TXNIP, apoptosis associated speck-like protein containing a CARD domain (ASC), caspase-1, interleukin-1β (IL-1β) and IL-18 to reduce liver injury. In addition, luteolin inhibits LPS-induced liver inflammation by inhibiting the production of inflammation-related gene tumor necrosis factor-α (TNF-α), IL-10, and IL-6. What's more, luteolin alleviated LPS-induced hepatocyte injury by inhibiting oxidative stress and regulating MDA, SOD, and GSH levels. However, the protective effect of luteolin on acute LPS-induced liver injury in mice was blocked by si-TXNIP in vitro. These combined data showed that luteolin may alleviate LPS-induced liver injury through the TXNIP-NLPR3 axis, providing new therapeutic targets and therapeutic drugs for subsequent studies.
收起
展开
DOI:
10.1016/j.phymed.2021.153586
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(248)
参考文献(0)
引证文献(27)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无