Eosinophil-to-Monocyte Ratio is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients After Intravenous Thrombolysis.

来自 PUBMED

作者:

Chen YRen JYang NHuang HHu XSun FZeng TZhou XPan WHu JGao BZhang SChen G

展开

摘要:

Eosinophil and monocyte have been demonstrated separately to be independent predictors of acute ischemic stroke (AIS). This study aimed to evaluate the association between eosinophil-to-monocyte ratio (EMR) and 3-month clinical outcome after treatment with recombinant tissue plasminogen activator (rt-PA) for AIS patients. Simultaneously, we made a simple comparison with other prognostic indicators, such as 24h neutrophil-to-lymphocyte ratio (NLR) and 24h platelet-to-lymphocyte ratio (PLR) to investigate the prognostic value of EMR. A total of 280 AIS patients receiving intravenous thrombolysis were retrospectively recruited for this study. Complete blood count evaluations for EMR were conducted on 24 hours admission. The poor outcome at 3-month was defined as the modified Rankin Scale (mRS) of 3-6 and the mRS score for death was 6. The EMR levels in patients with AIS were lower than those in the healthy controls and showed a negative correlation with the NIHSS score. At the 3-month follow-up, multivariate logistic regression analysis indicated an association among EMR, poor outcome and mortality. In addition, EMR had a higher predictive ability than popular biomarkers like NLR and PLR for 3-month mortality. The lower levels of EMR were independently associated with poor outcome and dead status in AIS patients.

收起

展开

DOI:

10.2147/CIA.S309923

被引量:

12

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(201)

参考文献(22)

引证文献(12)

来源期刊

Clinical Interventions in Aging

影响因子:3.825

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读