Covariation of the Fecal Microbiome with Diet in Nonpasserine Birds.

来自 PUBMED

作者:

Xiao KFan YZhang ZShen XLi XLiang XBi RWu YZhai JDai JIrwin DMChen WShen Y

展开

摘要:

Opportunistic feeding and multiple other environment factors can modulate the gut microbiome, and bias conclusions, when wild animals are used for studying the influence of phylogeny and diet on their gut microbiomes. Here, we controlled for these other confounding factors in our investigation of the magnitude of the effect of diet on the gut microbiome assemblies of nonpasserine birds. We collected fecal samples, at one point in time, from 35 species of birds in a single zoo as well as 6 species of domestic poultry from farms in Guangzhou city to minimize the influences from interfering factors. Specifically, we describe 16S rRNA amplicon data from 129 fecal samples obtained from 41 species of birds, with additional shotgun metagenomic sequencing data generated from 16 of these individuals. Our data show that diets containing native starch increase the abundance of Lactobacillus in the gut microbiome, while those containing plant-derived fiber mainly enrich the level of Clostridium Greater numbers of Fusobacteria and Proteobacteria are detected in carnivorous birds, while in birds fed a commercial corn-soybean basal diet, a stronger inner-connected microbial community containing Clostridia and Bacteroidia was enriched. Furthermore, the metagenome functions of the microbes (such as lipid metabolism and amino acid synthesis) were adapted to the different food types to achieve a beneficial state for the host. In conclusion, the covariation of diet and gut microbiome identified in our study demonstrates a modulation of the gut microbiome by dietary diversity and helps us better understand how birds live based on diet-microbiome-host interactions.IMPORTANCE Our study identified food source, rather than host phylogeny, as the main factor modulating the gut microbiome diversity of nonpasserine birds, after minimizing the effects of other complex interfering factors such as weather, season, and geography. Adaptive evolution of microbes to food types formed a dietary-microbiome-host interaction reciprocal state. The covariation of diet and gut microbiome, including the response of microbiota assembly to diet in structure and function, is important for health and nutrition in animals. Our findings help resolve the major modulators of gut microbiome diversity in nonpasserine birds, which had not previously been well studied. The diet-microbe interactions and cooccurrence patterns identified in our study may be of special interest for future health assessment and conservation in birds.

收起

展开

DOI:

10.1128/mSphere.00308-21

被引量:

15

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1696)

参考文献(64)

引证文献(15)

来源期刊

mSphere

影响因子:5.024

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读