Adipose-derived stem cell induced-tissue repair or wound healing is mediated by the concomitant upregulation of miR-21 and miR-29b expression and activation of the AKT signaling pathway.

来自 PUBMED

作者:

Liu SCBamodu OAKuo KTFong IHLin CCYeh CTChen SG

展开

摘要:

Adipose-derived stem cells (ADSCs), a subpopulation of mesenchymal stem cells, are characterized by their potential to differentiate into multiple cell lineages. Due to their abundance and relative ease of procurement, ADSCs are widely used for tissue repair and regeneration. However, the molecular mechanisms of the therapeutic effect of ADSCs remain unknown. MicroRNAs have emerged as important signaling molecules in skin wound healing, and their roles in ADSC-based therapies must be addressed. Here, we investigated the potential of ADSCs in improving cutaneous wound healing in vitro and in vivo. We simulated the microenvironment of the wound site by coculturing human dermal fibroblasts (HDFs) with ADSCs. We found that cocultured HDFs expressed significantly higher levels of miR-29b and miR-21 and had higher proliferation and migration rates than ADSCs cultured without HDFs. Moreover, increased expression of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type III Alpha 1 Chain (COL3A1), alpha-smooth muscle actin (α-SMA), vascular endothelial growth factor (VEGF), and Phosphoinositide 3-kinase (PI3K), p-Akt and decreased expression of Phosphatase and tensin homolog (PTEN) and matrix metalloproteinase (MMP)-1 was detected, suggesting extracellular remodeling and fibroblast activation and proliferation. We validated the in vitro results by using a rodent skin excisional wound model and implanted ADSC sheets in the wound. Compared with the controls, wounds implanted with ADSC sheets had significantly higher rates of wound-closure; increased expression of α-SMA, VEGF, PI3k, PTEN, COL1A1, and COL3A1; decreased expression of PTEN and MMP1; and upregulated levels of miR-29b and miR-21 in the skin. In summary, we evidenced that ADSCs facilitate the increase in miR-29b and miR-21 levels and promote the activation and proliferation of dermal fibroblasts and extracellular matrix (ECM) remodeling, with the associated release of VEGF. Thus, the ADSC-mediated increase in microRNAs is essential in tissue repair and has a therapeutic potential in cutaneous wound healing.

收起

展开

DOI:

10.1016/j.abb.2021.108895

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(155)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读