Predicting lying, sitting, walking and running using Apple Watch and Fitbit data.
This study's objective was to examine whether commercial wearable devices could accurately predict lying, sitting and varying intensities of walking and running.
We recruited a convenience sample of 49 participants (23 men and 26 women) to wear three devices, an Apple Watch Series 2, a Fitbit Charge HR2 and iPhone 6S. Participants completed a 65 min protocol consisting of 40 min of total treadmill time and 25 min of sitting or lying time. The study's outcome variables were six movement types: lying, sitting, walking self-paced and walking/running at 3 metabolic equivalents of task (METs), 5 METs and 7 METs. All analyses were conducted at the minute level with heart rate, steps, distance and calories from Apple Watch and Fitbit. These included three different machine learning models: support vector machines, Random Forest and Rotation forest.
Our dataset included 3656 and 2608 min of Apple Watch and Fitbit data, respectively. Rotation Forest models had the highest classification accuracies for Apple Watch at 82.6%, and Random Forest models had the highest accuracy for Fitbit at 90.8%. Classification accuracies for Apple Watch data ranged from 72.6% for sitting to 89.0% for 7 METs. For Fitbit, accuracies varied between 86.2% for sitting to 92.6% for 7 METs.
This preliminary study demonstrated that data from commercial wearable devices could predict movement types with reasonable accuracy. More research is needed, but these methods are a proof of concept for movement type classification at the population level using commercial wearable device data.
Fuller D
,Anaraki JR
,Simango B
,Rayner M
,Dorani F
,Bozorgi A
,Luan H
,A Basset F
... -
《-》
Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study.
Wrist-worn smart watches and fitness monitors (ie, wearables) have become widely adopted by consumers and are gaining increased attention from researchers for their potential contribution to naturalistic digital measurement of health in a scalable, mobile, and unobtrusive way. Various studies have examined the accuracy of these devices in controlled laboratory settings (eg, treadmill and stationary bike); however, no studies have investigated the heart rate accuracy of wearables during a continuous and ecologically valid 24-hour period of actual consumer device use conditions.
The aim of this study was to determine the heart rate accuracy of 2 popular wearable devices, the Apple Watch 3 and Fitbit Charge 2, as compared with the gold standard reference method, an ambulatory electrocardiogram (ECG), during consumer device use conditions in an individual. Data were collected across 5 daily conditions, including sitting, walking, running, activities of daily living (ADL; eg, chores, brushing teeth), and sleeping.
One participant, (first author; 29-year-old Caucasian male) completed a 24-hour ecologically valid protocol by wearing 2 popular wrist wearable devices (Apple Watch 3 and Fitbit Charge 2). In addition, an ambulatory ECG (Vrije Universiteit Ambulatory Monitoring System) was used as the gold standard reference method, which resulted in the collection of 102,740 individual heartbeats. A single-subject design was used to keep all variables constant except for wearable devices while providing a rapid response design to provide initial assessment of wearable accuracy for allowing the research cycle to keep pace with technological advancements. Accuracy of these devices compared with the gold standard ECG was assessed using mean error, mean absolute error, and mean absolute percent error. These data were supplemented with Bland-Altman analyses and concordance class correlation to assess agreement between devices.
The Apple Watch 3 and Fitbit Charge 2 were generally highly accurate across the 24-hour condition. Specifically, the Apple Watch 3 had a mean difference of -1.80 beats per minute (bpm), a mean absolute error percent of 5.86%, and a mean agreement of 95% when compared with the ECG across 24 hours. The Fitbit Charge 2 had a mean difference of -3.47 bpm, a mean absolute error of 5.96%, and a mean agreement of 91% when compared with the ECG across 24 hours. These findings varied by condition.
The Apple Watch 3 and the Fitbit Charge 2 provided acceptable heart rate accuracy (<±10%) across the 24 hour and during each activity, except for the Apple Watch 3 during the daily activities condition. Overall, these findings provide preliminary support that these devices appear to be useful for implementing ambulatory measurement of cardiac activity in research studies, especially those where the specific advantages of these methods (eg, scalability, low participant burden) are particularly suited to the population or research question.
Nelson BW
,Allen NB
《JMIR mHealth and uHealth》
Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study.
Physical activity reduces the incidences of noncommunicable diseases, obesity, and mortality, but an inactive lifestyle is becoming increasingly common. Innovative approaches to monitor and promote physical activity are warranted. While individual monitoring of physical activity aids in the design of effective interventions to enhance physical activity, a basic prerequisite is that the monitoring devices exhibit high validity.
Our goal was to assess the validity of monitoring heart rate (HR) and energy expenditure (EE) while sitting or performing light-to-vigorous physical activity with 4 popular wrist-worn wearables (Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa).
While wearing the 4 different wearables, 25 individuals performed 5 minutes each of sitting, walking, and running at different velocities (ie, 1.1 m/s, 1.9 m/s, 2.7 m/s, 3.6 m/s, and 4.1 m/s), as well as intermittent sprints. HR and EE were compared to common criterion measures: Polar-H7 chest belt for HR and indirect calorimetry for EE.
While monitoring HR at different exercise intensities, the standardized typical errors of the estimates were 0.09-0.62, 0.13-0.88, 0.62-1.24, and 0.47-1.94 for the Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, respectively. Depending on exercise intensity, the corresponding coefficients of variation were 0.9%-4.3%, 2.2%-6.7%, 2.9%-9.2%, and 4.1%-19.1%, respectively, for the 4 wearables. While monitoring EE at different exercise intensities, the standardized typical errors of the estimates were 0.34-1.84, 0.32-1.33, 0.46-4.86, and 0.41-1.65 for the Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, respectively. Depending on exercise intensity, the corresponding coefficients of variation were 13.5%-27.1%, 16.3%-28.0%, 15.9%-34.5%, and 8.0%-32.3%, respectively.
The Apple Watch Series 4 provides the highest validity (ie, smallest error rates) when measuring HR while sitting or performing light-to-vigorous physical activity, followed by the Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, in that order. The Apple Watch Series 4 and Polar Vantage V are suitable for valid HR measurements at the intensities tested, but HR data provided by the Garmin Fenix 5 and Fitbit Versa should be interpreted with caution due to higher error rates at certain intensities. None of the 4 wrist-worn wearables should be employed to monitor EE at the intensities and durations tested.
Düking P
,Giessing L
,Frenkel MO
,Koehler K
,Holmberg HC
,Sperlich B
... -
《JMIR mHealth and uHealth》