Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT.

来自 PUBMED

摘要:

To develop deep learning (DL) systems estimating visual function from macula-centered spectral-domain (SD) OCT images. Evaluation of a diagnostic technology. A total of 2408 10-2 visual field (VF) SD OCT pairs and 2999 24-2 VF SD OCT pairs collected from 645 healthy and glaucoma subjects (1222 eyes). Deep learning models were trained on thickness maps from Spectralis macula SD OCT to estimate 10-2 and 24-2 VF mean deviation (MD) and pattern standard deviation (PSD). Individual and combined DL models were trained using thickness data from 6 layers (retinal nerve fiber layer [RNFL], ganglion cell layer [GCL], inner plexiform layer [IPL], ganglion cell-IPL [GCIPL], ganglion cell complex [GCC] and retina). Linear regression of mean layer thicknesses were used for comparison. Deep learning models were evaluated using R2 and mean absolute error (MAE) compared with 10-2 and 24-2 VF measurements. Combined DL models estimating 10-2 achieved R2 of 0.82 (95% confidence interval [CI], 0.68-0.89) for MD and 0.69 (95% CI, 0.55-0.81) for PSD and MAEs of 1.9 dB (95% CI, 1.6-2.4 dB) for MD and 1.5 dB (95% CI, 1.2-1.9 dB) for PSD. This was significantly better than mean thickness estimates for 10-2 MD (0.61 [95% CI, 0.47-0.71] and 3.0 dB [95% CI, 2.5-3.5 dB]) and 10-2 PSD (0.46 [95% CI, 0.31-0.60] and 2.3 dB [95% CI, 1.8-2.7 dB]). Combined DL models estimating 24-2 achieved R2 of 0.79 (95% CI, 0.72-0.84) for MD and 0.68 (95% CI, 0.53-0.79) for PSD and MAEs of 2.1 dB (95% CI, 1.8-2.5 dB) for MD and 1.5 dB (95% CI, 1.3-1.9 dB) for PSD. This was significantly better than mean thickness estimates for 24-2 MD (0.41 [95% CI, 0.26-0.57] and 3.4 dB [95% CI, 2.7-4.5 dB]) and 24-2 PSD (0.38 [95% CI, 0.20-0.57] and 2.4 dB [95% CI, 2.0-2.8 dB]). The GCIPL (R2 = 0.79) and GCC (R2 = 0.75) had the highest performance estimating 10-2 and 24-2 MD, respectively. Deep learning models improved estimates of functional loss from SD OCT imaging. Accurate estimates can help clinicians to individualize VF testing to patients.

收起

展开

DOI:

10.1016/j.ophtha.2021.04.022

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(189)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读