-
Homeobox B5 promotes metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1 upregulation.
Background: Since metastasis remains the main reason for HCC-associated death, a better understanding of molecular mechanism underlying HCC metastasis is urgently needed. Here, we elucidated the role of Homeobox B5 (HOXB5), a member of the HOX transcriptional factor family, in promoting HCC metastasis. Method: The expression of HOXB5 and its functional targets fibroblast growth factor receptor 4 (FGFR4) and C-X-C motif chemokine ligand 1 (CXCL1) were detected by immunohistochemistry. Luciferase reporter and chromatin immunoprecipitation assays were performed to measure the transcriptional regulation of target genes by HOXB5. The effects of FGFR4 and CXCL1 on HOXB5-mediated metastasis were analyzed by an orthotopic metastasis model. Results: Elevated expression of HOXB5 had a positive correlation with poor tumour differentiation, higher TNM stage, and indicated unfavorable prognosis. Overexpression of HOXB5 promoted HCC metastasis through transactivating FGFR4 and CXCL1 expression, whereas knockdown of FGFR4 and CXCL1 decreased HOXB5-enhanced HCC metastasis. Moreover, HOXB5 overexpression in HCC cells promoted myeloid derived suppressor cells (MDSCs) infiltration through CXCL1/CXCR2 axis. Either depletion of MDSCs by anti-Gr1 or blocking CXCL1-CXCR2 axis by CXCR2 inhibitor impaired HOXB5-mediated HCC metastasis. In addition, fibroblast growth factor 19 (FGF19) contributed to the HOXB5 upregulation through PI3K/AKT/HIF1α pathway. Overexpression of FGF15 (an analog of FGF19 in mouse) promoted HCC metastasis, whereas knockdown of HOXB5 significantly inhibited FGF15-enhanced HCC metastasis in immunocompetent mice. HOXB5 expression was positively associated with CXCL1 expression and intratumoral MDSCs accumulation in human HCC tissues. Patients who co-expressed HOXB5/CXCL1 or HOXB5/CD11b exhibited the worst prognosis. Furthermore, the combination of FGFR4 inhibitor BLU-554 and CXCR2 inhibitor SB265610 dramatically decreased HOXB5-mediated HCC metastasis. Conclusion: HOXB5 was a potential prognostic biomarker in HCC patients and targeting this loop may provide a promising treatment strategy for the inhibition of HOXB5-mediated HCC metastasis.
He Q
,Huang W
,Liu D
,Zhang T
,Wang Y
,Ji X
,Xie M
,Sun M
,Tian D
,Liu M
,Xia L
... -
《Theranostics》
-
CXCL12-mediated HOXB5 overexpression facilitates Colorectal Cancer metastasis through transactivating CXCR4 and ITGB3.
Background: Metastasis is the major reason for the high mortality of colorectal cancer (CRC). However, the molecular mechanism underlying CRC metastasis remains unclear. Here, we report a novel role of homeobox B5 (HOXB5), a member of the HOX family, in promoting CRC metastasis. Method: The expression of HOXB5 and its target genes were examined by immunohistochemistry in human CRC. Chromatin immunoprecipitation and luciferase reporter assays were performed to measure the transcriptional regulation of target genes by HOXB5. The metastatic capacities of CRC cells were evaluated by in vivo lung and liver metastatic models. Results: The elevated expression of HOXB5 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in CRC patients. HOXB5 expression was an independent and significant risk factor for the recurrence and survival in CRC patients. Overexpression of HOXB5 promoted CRC metastasis by transactivating metastatic related genes, C-X-C motif chemokine receptor 4 (CXCR4) and integrin subunit beta 3 (ITGB3). C-X-C motif chemokine ligand 12 (CXCL12), which is the ligand of CXCR4, upregulated HOXB5 expression through the extracellular regulated protein kinase (ERK)/ETS proto-oncogene 1, transcription factor (ETS1) pathway. The knockdown of HOXB5 decreased CXCL12-enhanced CRC metastasis. Furthermore, AMD3100, a specific CXCR4 inhibitor, significantly suppressed HOXB5-mediated CRC metastasis. HOXB5 expression was positively correlated with CXCR4 and ITGB3 expression in human CRC tissues, and patients with positive co-expression of HOXB5/CXCR4, or HOXB5/ITGB3 exhibited the worst prognosis. Conclusion: Our study implicates HOXB5 as a prognostic biomarker in CRC, and defines a CXCL12-HOXB5-CXCR4 positive feedback loop that plays an important role in promoting CRC metastasis.
Feng W
,Huang W
,Chen J
,Qiao C
,Liu D
,Ji X
,Xie M
,Zhang T
,Wang Y
,Sun M
,Tian D
,Fan D
,Nie Y
,Wu K
,Xia L
... -
《Theranostics》
-
FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2.
Metastasis remains the major reason for the high mortality of patients with hepatocellular carcinoma (HCC). This study was designed to investigate the role of E-twenty-six-specific sequence variant 4 (ETV4) in promoting HCC metastasis and to explore a new combination therapy strategy for ETV4-mediated HCC metastasis.
PLC/PRF/5, MHCC97H, Hepa1-6, and H22 cells were used to establish orthotopic HCC models. Clodronate liposomes were used to clear macrophages in C57BL/6 mice. Gr-1 monoclonal antibody was used to clear myeloid-derived suppressor cells (MDSCs) in C57BL/6 mice. Flow cytometry and immunofluorescence were used to detect the changes of key immune cells in the tumour microenvironment.
ETV4 expression was positively related to higher tumour-node-metastasis (TNM) stage, poor tumour differentiation, microvascular invasion, and poor prognosis in human HCC. Overexpression of ETV4 in HCC cells transactivated PD-L1 and CCL2 expression, which increased tumour-associated macrophage (TAM) and MDSC infiltration and inhibited CD8+ T-cell accumulation. Knockdown of CCL2 by lentivirus or CCR2 inhibitor CCX872 treatment impaired ETV4-induced TAM and MDSC infiltration and HCC metastasis. Furthermore, FGF19/FGFR4 and HGF/c-MET jointly upregulated ETV4 expression through the ERK1/2 pathway. Additionally, ETV4 upregulated FGFR4 expression, and downregulation of FGFR4 decreased ETV4-enhanced HCC metastasis, which created a FGF19-ETV4-FGFR4 positive feedback loop. Finally, anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib prominently inhibited FGF19-ETV4 signalling-induced HCC metastasis.
ETV4 is a prognostic biomarker, and anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib may be effective strategies to inhibit HCC metastasis.
Here, we reported that ETV4 increased PD-L1 and chemokine CCL2 expression in HCC cells, which resulted in TAM and MDSC accumulation and CD8+ T-cell inhibition to facilitate HCC metastasis. More importantly, we found that anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib markedly inhibited FGF19-ETV4 signalling-mediated HCC metastasis. This preclinical study will provide a theoretical basis for the development of new combination immunotherapy strategies for patients with HCC.
Xie M
,Lin Z
,Ji X
,Luo X
,Zhang Z
,Sun M
,Chen X
,Zhang B
,Liang H
,Liu D
,Feng Y
,Wang Y
,Li Y
,Liu B
,Huang W
,Xia L
... -
《-》
-
Fibroblast Growth Factor 19-Mediated Up-regulation of SYR-Related High-Mobility Group Box 18 Promotes Hepatocellular Carcinoma Metastasis by Transactivating Fibroblast Growth Factor Receptor 4 and Fms-Related Tyrosine Kinase 4.
The poor prognosis of patients with hepatocellular carcinoma (HCC) is mainly attributed to its high rate of metastasis and recurrence. However, the molecular mechanisms underlying HCC metastasis need to be elucidated. The SRY-related high-mobility group box (SOX) family proteins, which are a group of highly conserved transcription factors, play important roles in cancer initiation and progression. Here, we report on a role of SOX18, a member of the SOX family, in promoting HCC invasion and metastasis.
The elevated expression of SOX18 was positively correlated with poor tumor differentiation, higher tumor-node-metastasis (TNM) stage, and poor prognosis. Overexpression of SOX18 promoted HCC metastasis by up-regulating metastasis-related genes, including fibroblast growth factor receptor 4 (FGFR4) and fms-related tyrosine kinase 4 (FLT4). Knockdown of both FGFR4 and FLT4 significantly decreased SOX18-mediated HCC invasion and metastasis, whereas the stable overexpression of FGFR4 and FLT4 reversed the decrease in cell invasion and metastasis that was induced by inhibition of SOX18. Fibroblast growth factor 19 (FGF19), which is the ligand of FGFR4, up-regulated SOX18 expression. A mechanistic investigation indicated that the up-regulation of SOX18 that was mediated by the FGF19-FGFR4 pathway relied on the phosphorylated (p)-fibroblast growth factor receptor substrate 2/p-glycogen synthase kinase 3 beta/β-catenin pathway. SOX18 knockdown significantly reduced FGF19-enhanced HCC invasion and metastasis. Furthermore, BLU9931, a specific FGFR4 inhibitor, significantly reduced SOX18-mediated HCC invasion and metastasis. In human HCC tissues, SOX18 expression was positively correlated with FGF19, FGFR4, and FLT4 expression, and patients that coexpressed FGF19/SOX18, SOX18/FGFR4, or SOX18/FLT4 had the worst prognosis.
We defined a FGF19-SOX18-FGFR4 positive feedback loop that played a pivotal role in HCC metastasis, and targeting this pathway may be a promising therapeutic option for the clinical management of HCC.
Chen J
,Du F
,Dang Y
,Li X
,Qian M
,Feng W
,Qiao C
,Fan D
,Nie Y
,Wu K
,Xia L
... -
《-》
-
Interleukin 1β-mediated HOXC10 Overexpression Promotes Hepatocellular Carcinoma Metastasis by Upregulating PDPK1 and VASP.
Rationale: Metastasis and recurrence are the primary reasons for the high mortality rate of human hepatocellular carcinoma (HCC) patients. However, the exact mechanism underlying HCC metastasis remains unclear. The Homeobox (HOX) family proteins, which are a highly conserved transcription factor superfamily, play important roles in cancer metastasis. Here, we report a novel role of HOXC10, one of the most upregulated HOX genes in human HCC tissues, in promoting HCC metastasis. Methods: The expression of HOXC10 and its functional targets was detected by immunohistochemistry in two independent human HCC cohorts. Luciferase reporter and chromatin immunoprecipitation assays were used to measure the transcriptional regulation of target genes by HOXC10. The effect of HOXC10-mediated invasion and metastasis were analyzed by Transwell assays and by an orthotopic metastasis model. Results: Elevated expression of HOXC10 was positively correlated with the loss of tumor encapsulation and with higher tumor-nodule-metastasis (TNM) stage and poor prognosis in human HCC. Overexpression of HOXC10 promoted HCC metastasis by upregulating metastasis-related genes, including 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and vasodilator-stimulated phosphoprotein (VASP). Knockdown of PDPK1 and VASP inhibited HOXC10-enhanced HCC metastasis, whereas upregulation of PDPK1 and VASP rescued the decreased metastasis induced by HOXC10 knockdown. Interleukin-1β (IL-1β), which is the ligand of IL-1R1, upregulated HOXC10 expression through the c-Jun NH2-terminal kinase (JNK)/c-Jun pathway. HOXC10 knockdown significantly reduced IL-1β-mediated HCC metastasis. Furthermore, Anakinra, a specific antagonist of IL-1R1, inhibited IL-1β-induced HOXC10 upregulation and HCC metastasis. In human HCC tissues, HOXC10 expression was positively correlated with PDPK1, VASP and IL-1R1 expression, and patients with positive coexpression of HOXC10/PDPK1, HOXC10/VASP or IL-1R1/HOXC10 exhibited the poorest prognosis. Conclusions: Upregulated HOXC10 induced by IL-1β promotes HCC metastasis by transactivating PDPK1 and VASP expression. Thus, our study implicates HOXC10 as a prognostic biomarker, and targeting this pathway may be a promising therapeutic option for the clinical prevention of HCC metastasis.
Dang Y
,Chen J
,Feng W
,Qiao C
,Han W
,Nie Y
,Wu K
,Fan D
,Xia L
... -
《Theranostics》