Characteristics of very high-energy electron beams for the irradiation of deep-seated targets.

来自 PUBMED

作者:

Böhlen TTGermond JFTraneus EBourhis JVozenin MCBailat CBochud FMoeckli R

展开

摘要:

Driven by advances in accelerator technology and the potential of exploiting the FLASH effect for the treatment of deep-seated targets (>5 cm), there is an active interest in the construction of devices to deliver very high-energy electron (VHEE) beams for radiation therapy. The application of novel VHEE devices, however, requires an assessment of the tradeoffs between the different beam parameter choices including beam energies, beam divergences, and maximal field sizes. This study systematically examines the dosimetric beam properties of VHEE beams, determining their clinical usefulness while marking their limits of applications for different beam configurations. We performed Monte Carlo simulations of the dose distributions of electron beams for different energies (25-250 MeV), source-to-surface distances (SSD) (50 cm, 100 cm, parallel), and field sizes (2 cm2  × 2 cm2 to 15 cm2  × 15 cm2 ) in water using a research version of the RayStation treatment planning system (RaySearch Labs 9A IONPG). The beam was simulated using a monoenergetic point source and perfect collimation. Central axis percentage depth dose (PDD) and transverse dose profiles at multiple depths were evaluated and compared to those of MV photon beams. Profile characteristics including therapeutic range (TR) at 90%, proximal fall-off (PFO) at 90%, lateral penumbra (LP) at 90%-10%, and field width (FW) at 90% were obtained. Very high-energy electrons beams with SSD 100 cm and parallel beams (infinite SSD) exhibit a linear to near-linear increase of TR as a function of energy in the simulated energy range and reach values well beyond the typical depths of lesions encountered in clinics (<20 cm). Their TR show a marked field size dependence only for field sizes <10 cm2  × 10 cm2 . For VHEE beams with SSD 50 cm, TR are largely reduced (4-8 cm). For beam energies >150 MeV with large SSD (>100 cm), for many configurations, there is no substantial difference in PDD when adding an opposed beam. This may potentially reduce the number of VHEE beams needed for treatment by a factor of two compared to a treatment using lower energies and lower SSD. In order to cover deep-seated targets homogeneously, VHEE devices with a parallel beam must provide a maximum field size up to several centimeters larger than the tumor size. For the investigated diverging beams, there is not such a significant field width reduction with depth for larger fields as it is compensated by divergence. Penumbrae of VHEE beams are smaller than those of clinical MV photon beams for lower depths (<5 cm) but increase quickly for larger depths. There is only a relatively small dependence of penumbra on the SSD of the beam. The findings presented in this study assess the performance of VHEE beams and offer a first estimate of treatment indications and tradeoffs for a given design of a VHEE device. SSD >100 cm results in clinically more favorable PDD. Beam energies of 100 MeV and above are needed to cover common tumors (5-15 cm in-depth) conformally. Higher energies provide an additional benefit specifically for small and deep-seated lesions due to their reduced lateral penumbrae.

收起

展开

DOI:

10.1002/mp.14891

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(554)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读